More Computer Science Courses
Geometric Folding Algorithms: Linkages, Origami, Polyhedra
Course Description
This course focuses on the algorithms for analyzing and designing geometric foldings. Topics include reconfiguration of foldable structures, linkages made from one-dimensional rods connected by hinges, folding two-dimensional paper (origami), and unfolding and folding three-dimensional polyhedra. Applications to architecture, robotics, manufacturing, and biology are also covered in this course.
This is an advanced class on computational geometry focusing on folding and unfolding of geometric structures including linkages, proteins, paper, and polyhedra. Examples of problems considered in this field include:
- What forms of origami can be designed automatically by algorithms?
- What shapes can result by folding a piece of paper flat and making one complete straight cut?
- What polyhedra can be cut along their surface and unfolded into a flat piece of paper without overlap?
- When can a linkage of rigid bars be untangled or folded into a desired configuration?
Many folding problems have applications in areas including manufacturing, robotics, graphics, and protein folding. This class covers many of the results that have been proved in the past few years, as well as the several exciting open problems that remain open.
Copyright Information

Video Lectures & Study Materials
Visit the official course website for more study materials: http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-849-geometric-folding-algorithms-linkages-origami-polyhedra-fall-2012/
Comments
*If any embedded videos constitute copyright infringement, we strictly recommend contacting the website hosts directly to have such videos taken down. In such an event, these videos will no longer be playable on CosmoLearning or other websites.