- Amateur Astronomy
- Astrobiology (134)
- Astrophysics (79)
- Black Holes (38)
- Cosmology (204)
- Dark Matter, Dark Energy (13)
- Galaxies (37)
- History of Astronomy (37)
- Nebulae (19)
- Observational astronomy (107)
- 1. Space Observatories (10)
- 1.1 Chandra X-Ray (63)
- 1.2 Hubble telescope (9)
- 1.3 Kepler Mission (11)
- Solar System (124)
- Small Solar System Bodies (SSSB) (30)
- Space Exploration (90)
- 1. NASA (9)
- 1.1 NASA Human Spaceflight (15)
- 1.1.1 NASA Apollo Program (18)
- 1.1.1.1 The Astronauts (13)
- 1.1.1.2 The Apollo Spacecraft (23)
- 1.1.1.3 The Apollo 7 (14)
- 1.1.1.4 The Apollo 8 (8)
- 1.1.1.5 The Apollo 9 (1)
- 1.1.1.6 The Apollo 10 (1)
- 1.1.1.7 The Apollo 11 (79)
- 1.1.2 NASA Shuttle Program (104)
- 1.1.2.1 STS-127 (20)
- 1.1.2.2 STS-128 (56)
- 1.1.2.3 STS-129 (89)
- 1.1.2.4 STS-130 (10)
- 1.1.2.5 STS-131 (81)
- 1.1.2.6 STS-132 (77)
- 1.1.3 NASA Constellation Program (36)
- 1.2 NASA Uncrewed Missions (17)
- 1.2.a Solar Missions (20)
- 1.2.b Lunar Missions (7)
- 1.2.c Mercury missions (3)
- 1.2.d Venus Missions (4)
- 1.2.e Mars Missions (29)
- 1.2.f Jupiter Missions (10)
- 1.2.g Saturn Missions (17)
- 1.2.h Uranus Missions (2)
- 1.2.i Neptune Missions (4)
- 1.2.j Pluto Missions (3)
- 1.2.k Interplanetary Missions (8)
- 1.2.l Boeing X-37 (12)
- 1.3 Expendable Launch Systems (1)
- 2. International Space Station (7)
- 2.1 ISS Assembly (25)
- Stars (31)
- Supernovae (8)
Topics: Space Exploration - 1.2.a Solar Missions
1.2.a Solar Missions
The first satellites designed to observe the Sun were NASA's Pioneers 5, 6, 7, 8 and 9, which were launched between 1959 and 1968. These probes orbited the Sun at a distance similar to that of the Earth, and made the first detailed measurements of the solar wind and the solar magnetic field. Pioneer 9 operated for a particularly long period of time, transmitting data until 1987.
In the 1970s, two Helios spacecraft and the Skylab Apollo Telescope Mount provided scientists with significant new data on solar wind and the solar corona. The Helios 1 and 2 probes was a joint U.S.–German probe that studied the solar wind from an orbit carrying the spacecraft inside Mercury's orbit at perihelion. The Skylab space station, launched by NASA in 1973, included a solar observatory module called the Apollo Telescope Mount that was operated by astronauts resident on the station. Skylab made the first time-resolved observations of the solar transition region and of ultraviolet emissions from the solar corona. Discoveries included the first observations of coronal mass ejections, then called "coronal transients", and of coronal holes, now known to be intimately associated with the solar wind.
In 1980, the Solar Maximum Mission was launched by NASA. This spacecraft was designed to observe gamma rays, X-rays and UV radiation from solar flares during a time of high solar activity and solar luminosity. Just a few months after launch, however, an electronics failure caused the probe to go into standby mode, and it spent the next three years in this inactive state. In 1984 Space Shuttle Challenger mission STS-41C retrieved the satellite and repaired its electronics before re-releasing it into orbit. The Solar Maximum Mission subsequently acquired thousands of images of the solar corona before re-entering the Earth's atmosphere in June 1989.
Launched in 1991, Japan's Yohkoh (Sunbeam) satellite observed solar flares at X-ray wavelengths. Mission data allowed scientists to identify several different types of flares, and also demonstrated that the corona away from regions of peak activity was much more dynamic and active than had previously been supposed. Yohkoh observed an entire solar cycle but went into standby mode when an annular eclipse in 2001 caused it to lose its lock on the Sun. It was destroyed by atmospheric reentry in 2005.
One of the most important solar missions to date has been the Solar and Heliospheric Observatory, jointly built by the European Space Agency and NASA and launched on 2 December 1995. Originally intended to serve a two-year mission, SOHO is still in operation as of 2009. It has proven so useful that a follow-on mission, the Solar Dynamics Observatory, is planned for launch in November 2009. Situated at the Lagrangian point between the Earth and the Sun (at which the gravitational pull from both is equal), SOHO has provided a constant view of the Sun at many wavelengths since its launch. In addition to its direct solar observation, SOHO has enabled the discovery of large numbers of comets, mostly very tiny sungrazing comets which incinerate as they pass the Sun.
All these satellites have observed the Sun from the plane of the ecliptic, and so have only observed its equatorial regions in detail. The Ulysses probe was launched in 1990 to study the Sun's polar regions. It first traveled to Jupiter, to "slingshot" past the planet into an orbit which would take it far above the plane of the ecliptic. Serendipitously, it was well-placed to observe the collision of Comet Shoemaker-Levy 9 with Jupiter in 1994. Once Ulysses was in its scheduled orbit, it began observing the solar wind and magnetic field strength at high solar latitudes, finding that the solar wind from high latitudes was moving at about 750 km/s which was slower than expected, and that there were large magnetic waves emerging from high latitudes which scattered galactic cosmic rays.
Elemental abundances in the photosphere are well known from spectroscopic studies, but the composition of the interior of the Sun is more poorly understood. A solar wind sample return mission, Genesis, was designed to allow astronomers to directly measure the composition of solar material. Genesis returned to Earth in 2004 but was damaged by a crash landing after its parachute failed to deploy on reentry into Earth's atmosphere. Despite severe damage, some usable samples have been recovered from the spacecraft's sample return module and are undergoing analysis.
The Solar Terrestrial Relations Observatory (STEREO) mission was launched in October 2006. Two identical spacecraft were launched into orbits that cause them to (respectively) pull further ahead of and fall gradually behind the Earth. This enables stereoscopic imaging of the Sun and solar phenomena, such as coronal mass ejections.
Source: Wikipedia

The Moon passing in front of the Sun, as taken by the STEREO-B spacecraft on February 25, 2007. Because the satellite is in an Earth-trailing orbit and is further from the Moon than the Earth is, the Moon appears smaller than the Sun. Source: Phillips, T. (2007). "Stereo Eclipse". Science@NASA. NASA.