- Acids and Bases (22)
- Atomic Structure (39)
- Aufbau Principle (1)
- Bohr Model
- Electromagnetic Radiation (29)
- Periodic Trends (4)
- Quantum Numbers & Orbitals (27)
- The Wave Function
- Biochemistry (51)
- Bonding (16)
- Chemical Bonds (7)
- Lewis Structures (2)
- VSEPR Theory (7)
- Chemical Elements (193)
- Chemical Equilibrium (13)
- Chemical Kinetics (6)
- Chemical Reactions (35)
- Coordination Chemistry
- Electrochemistry (19)
- Experimental Chemistry (1)
- Gases (5)
- Dalton's Law
- Effusion and Diffusion
- Gas Laws (3)
- Gas Stoichiometry (1)
- Kinetic Theory
- Real gas
- General Chemistry (213)
- Nomenclature (2)
- History of Chemistry (17)
- Inorganic Chemistry (8)
- Nuclear Chemistry (6)
- Organic Chemistry (63)
- Alcohols (1)
- Aldehydes and Ketones (1)
- Aliphatics (8)
- Amines
- Aromatics (1)
- Carboxylic Acids & Esters (2)
- Organic Reactions (7)
- Polymers (5)
- Physical Chemistry (3)
- Quantum Chemistry (2)
- Solid-state chemistry (34)
- Solutions (14)
- Spectroscopy (1)
- States of Matter (9)
- Stoichiometry (6)
- Theoretical Chemistry (1)
- Thermochemistry (55)
- Gibbs Free Energy (1)
Topics: Bonding
Bonding
A chemical bond is the physical process responsible for the attractive interactions between atoms and molecules, and that which confers stability to diatomic and polyatomic chemical compounds. The explanation of the attractive forces is a complex area that is described by the laws of quantum electrodynamics.