- Acids and Bases (22)
- Atomic Structure (39)
- Aufbau Principle (1)
- Bohr Model
- Electromagnetic Radiation (29)
- Periodic Trends (4)
- Quantum Numbers & Orbitals (27)
- The Wave Function
- Biochemistry (51)
- Bonding (16)
- Chemical Bonds (7)
- Lewis Structures (2)
- VSEPR Theory (7)
- Chemical Elements (193)
- Chemical Equilibrium (13)
- Chemical Kinetics (6)
- Chemical Reactions (35)
- Coordination Chemistry
- Electrochemistry (19)
- Experimental Chemistry (1)
- Gases (5)
- Dalton's Law
- Effusion and Diffusion
- Gas Laws (3)
- Gas Stoichiometry (1)
- Kinetic Theory
- Real gas
- General Chemistry (213)
- Nomenclature (2)
- History of Chemistry (17)
- Inorganic Chemistry (8)
- Nuclear Chemistry (6)
- Organic Chemistry (63)
- Alcohols (1)
- Aldehydes and Ketones (1)
- Aliphatics (8)
- Amines
- Aromatics (1)
- Carboxylic Acids & Esters (2)
- Organic Reactions (7)
- Polymers (5)
- Physical Chemistry (3)
- Quantum Chemistry (2)
- Solid-state chemistry (34)
- Solutions (14)
- Spectroscopy (1)
- States of Matter (9)
- Stoichiometry (6)
- Theoretical Chemistry (1)
- Thermochemistry (55)
- Gibbs Free Energy (1)
Topics: Coordination Chemistry
Coordination Chemistry
A coordination compound or "metal complex", is a structure consisting of a central atom or molecule connected to surrounding atoms or molecules. Originally, a complex implied a reversible association of molecules, atoms, or ions through weak chemical bonds. As applied to coordination chemistry, this meaning has evolved. Some metal complexes are formed virtually irreversibly and many are bound together by bonds that are quite strong.