- Applied Physics
- Biophysics (1)
- Medical Physics (1)
- Remote Sensing (1)
- Atomic Models (10)
- Classical Mechanics (56)
- Circular Motion (3)
- Dynamics (9)
- Fluid Mechanics (83)
- Kinematics (7)
- Momentum (1)
- Vectors (1)
- Work and Energy (4)
- Computational Physics
- Condensed Matter Physics (2)
- Continuum Mechanics (1)
- Electromagnetism (71)
- Electric Circuits (48)
- Electrostatics (6)
- Magnetism (7)
- EM Radiation (4)
- Experimental Physics (1)
- General Physics (139)
- History of Physics (122)
- Albert Einstein (19)
- Galileo Galilei (47)
- Hans Christian Oersted (4)
- Isaac Newton (4)
- Nikola Tesla (84)
- Richard Feynman (27)
- Solvay Conferences (8)
- Lagrangian Mechanics (1)
- Modern Physics (2)
- Nuclear Physics (11)
- Optics (7)
- Quantum Optics
- Particle Physics (84)
- Supersymmetry (1)
- Plasma Physics (1)
- Quantum Field Theory (7)
- Quantum Mechanics (246)
- 1. Quantum Gravity (4)
- 1.1 Holographic Principle (2)
- Relativity (61)
- General Relativity (34)
- Special Relativity (14)
- Statistical Mechanics (17)
- String Theory (27)
- Theoretical Physics (11)
- Thermodynamics (11)
- Vibrations and Waves (90)
Topics: Classical Mechanics - Dynamics
Dynamics
Dynamics is the branch of Physics that analyzes the relationship between the forces acting over bodies and the resulted motion, the fundamental principles and properties of the bodies like mass, moment, inertia, acceleration and reaction.The basis of Dynamics were defined by Newtonian Mechanics and reformulated by Lagrangian Mechanics and Hamilton Mechanics.





Showing 4 of 4 courses. See All