- Abstract Algebra (3)
- Representation Theory (1)
- Ring Theory
- Algebra (51)
- Algebraic Geometry (2)
- Analytic Geometry (1)
- Applied Mathematics (202)
- Arithmetic (6)
- Calculus (112)
- Differential Calculus (69)
- Differential Equations (41)
- Integral Calculus (64)
- Limits (19)
- Multivariable Calculus (131)
- Precalculus (3)
- Tensor Calculus (1)
- Vector Calculus (1)
- Chaos Theory (1)
- Combinatorics (1)
- Polynomial Method (1)
- Complex Analysis (4)
- Complex Numbers
- Differential Geometry (3)
- Functional Analysis (2)
- Geometry (5)
- Fractals
- Non-Euclidean Geometry (2)
- Group Theory
- Lie Groups (2)
- History of Math (59)
- Linear Algebra (6)
- Mathematical Logic
- Set Theory (1)
- Mathematical Modeling
- Mathematics Education (11)
- Number Theory (1)
- Elliptic Curves (1)
- Quaternions
- Numerical Analysis (2)
- Partial Differential Equations (5)
- Probability (41)
- Queueing Theory
- Stochastic Process (2)
- Real Analysis (5)
- Recreational Mathematics
- Math Games
- Math Puzzles
- SAT Math (52)
- Statistics (49)
- Linear Models
- Stochastic Calculus
- Topology (5)
- K-theory (1)
- Point-Set Topology
- Trigonometry (18)

# Topics: Number Theory - Elliptic Curves

### Elliptic Curves

In mathematics, an elliptic curve is a plane algebraic curve defined by an equation of the form$${\displaystyle y^{2}=x^{3}+ax+b} y^{2}=x^{3}+ax+b$$

that is non-singular; that is, it has no cusps or self-intersections. (When the characteristic of the coefficient field is equal to 2 or 3, the above equation is not quite general enough to comprise all non-singular cubic curves; see below for a more precise definition.)

Formally, an elliptic curve is a smooth, projective, algebraic curve of genus one, on which there is a specified point O. An elliptic curve is in fact an abelian variety – that is, it has a multiplication defined algebraically, with respect to which it is an abelian group – and O serves as the identity element. Often the curve itself, without O specified, is called an elliptic curve. The point O is actually the "point at infinity" in the projective plane.

added 3 years ago
Start Course

Showing 1 of 1 courses. See All