Atomic orbits and harmonic oscillators 
Atomic orbits and harmonic oscillators
by Stanford / Leonard Susskind
Video Lecture 3 of 10
Not yet rated
Views: 1,590
Date Added: February 16, 2015

Lecture Description

Leonard Susskind derives the energy levels of electrons in an atom using the quantum mechanics of angular momentum, and then moves on to describe the quantum mechanics of the harmonic oscillator.

Professor Susskind uses the quantum mechanics of angular momentum derived in the last lecture to develop the Hamiltonian for the central force coulomb potential which describes an atom. The solution of the Schrödinger equation for this system leads to the energy levels for atomic orbits. He then derives the equations for a quantum harmonic oscillator, and demonstrates that the ground state of a harmonic oscillator cannot be at zero energy due to the Heisenberg uncertainty principle.

Recorded on October 7, 2013.

- Angular momentum multiplets
- Coulomb potential
- Central force problem
- Atomic orbit
- Harmonic oscillator
- Heisenberg uncertainty principle

Course Index

Course Description

This course will explore the various types of quantum systems that occur in nature, from harmonic oscillators to atoms and molecules, photons, and quantum fields. Students will learn what it means for an electron to be a fermion and how that leads to the Pauli exclusion principle. They will also learn what it means for a photon to be a boson and how that allows us to build radios and lasers. The strange phenomenon of quantum tunneling will lead to an understanding of how nuclei emit alpha particles and how the same effect predicts that cosmological space can “boil.” Finally, the course will delve into the world of quantum field theory and the relation between waves and particles.


There are no comments. Be the first to post one.
  Post comment as a guest user.
Click to login or register:
Your name:
Your email:
(will not appear)
Your comment:
(max. 1000 characters)
Are you human? (Sorry)