Lecture Description
Professor Saltzman continues his discussion of biomedical imaging technology. Magnetic resonance imaging (MRI) is introduced as an alternate form of imaging, which does not use ionizing radiation yet can provide detailed structure of the body. Functional MRI (fMRI) has a different application from traditional MRI. It can be used to measure oxygen consumption (tissue metabolic rate), and is an important tool in deciphering brain function. Third, ultrasound imaging is another imaging technique that can detect motion by translating sound wave reflections into structural images at fast timescale. Finally, examples of nuclear imaging and advances in light microscopy are discussed.
Course Index
- What Is Biomedical Engineering?
- What Is Biomedical Engineering? (cont.)
- Genetic Engineering
- Genetic Engineering (cont.)
- Cell Culture Engineering
- Cell Culture Engineering (cont.)
- Cell Communication and Immunology
- Cell Communication and Immunology (cont.)
- Biomolecular Engineering: Engineering of Immunity
- Biomolecular Engineering: Engineering of Immunity (cont.)
- Biomolecular Engineering: General Concepts
- Biomolecular Engineering: General Concepts (cont.)
- Cardiovascular Physiology
- Cardiovascular Physiology (cont.)
- Cardiovascular Physiology (cont.)
- Renal Physiology
- Renal Physiology (cont.)
- Biomechanics and Orthopedics
- Biomechanics and Orthopedics (cont.)
- Bioimaging
- Bioimaging (cont.)
- Tissue Engineering
- Tissue Engineering (cont.)
- Biomedical Engineers and Cancer
- Biomedical Engineers and Artificial Organs
Course Description
The course covers basic concepts of biomedical engineering and their connection with the spectrum of human activity. It serves as an introduction to the fundamental science and engineering on which biomedical engineering is based. Case studies of drugs and medical products illustrate the product development-product testing cycle, patent protection, and FDA approval. It is designed for science and non-science majors.