Lecture Description
Professor Saltzman first reviews the electromagnetic spectrum, the different regimes of the spectrum, their respective wavelengths, energies, and ways of detecting them. He then talks about the use of high energy radio waves for imaging of the body. The history, components, advantages and limitations of X-ray imaging are presented in detail. Next, he introduces Computed Tomography, a related imaging technique which uses mathematical computation to compile line-scanned X-rays into a three dimensional image. Finally, Professor Saltzman touches on harmful effects of X-ray radiation, and ways to limit or avoid overexposure in these imaging techniques.
Course Index
- What Is Biomedical Engineering?
- What Is Biomedical Engineering? (cont.)
- Genetic Engineering
- Genetic Engineering (cont.)
- Cell Culture Engineering
- Cell Culture Engineering (cont.)
- Cell Communication and Immunology
- Cell Communication and Immunology (cont.)
- Biomolecular Engineering: Engineering of Immunity
- Biomolecular Engineering: Engineering of Immunity (cont.)
- Biomolecular Engineering: General Concepts
- Biomolecular Engineering: General Concepts (cont.)
- Cardiovascular Physiology
- Cardiovascular Physiology (cont.)
- Cardiovascular Physiology (cont.)
- Renal Physiology
- Renal Physiology (cont.)
- Biomechanics and Orthopedics
- Biomechanics and Orthopedics (cont.)
- Bioimaging
- Bioimaging (cont.)
- Tissue Engineering
- Tissue Engineering (cont.)
- Biomedical Engineers and Cancer
- Biomedical Engineers and Artificial Organs
Course Description
The course covers basic concepts of biomedical engineering and their connection with the spectrum of human activity. It serves as an introduction to the fundamental science and engineering on which biomedical engineering is based. Case studies of drugs and medical products illustrate the product development-product testing cycle, patent protection, and FDA approval. It is designed for science and non-science majors.