Lecture Description
Professor Saltzman reviews the pharmacokinetic first-order rate equation that can be used to model changes in drug concentration in the blood, as well as its derivation from the law of conservation of mass. The importance of maintaining a drug concentration that is sufficient for therapeutic purpose, but below a toxic level, is emphasized. Since this is directly affected by drug administration method, ways to localize and sustain therapeutic concentrations of drug, such as incorporating in slow-releasing, biocompatible polymers are introduced. Professor Saltzman gave some examples of clinical applications of controlled release drug delivery system, such as anti-restenosis drug incorporated into stents, and chemotherapeutic drugs in brain implants and microspheres.
Course Index
- What Is Biomedical Engineering?
- What Is Biomedical Engineering? (cont.)
- Genetic Engineering
- Genetic Engineering (cont.)
- Cell Culture Engineering
- Cell Culture Engineering (cont.)
- Cell Communication and Immunology
- Cell Communication and Immunology (cont.)
- Biomolecular Engineering: Engineering of Immunity
- Biomolecular Engineering: Engineering of Immunity (cont.)
- Biomolecular Engineering: General Concepts
- Biomolecular Engineering: General Concepts (cont.)
- Cardiovascular Physiology
- Cardiovascular Physiology (cont.)
- Cardiovascular Physiology (cont.)
- Renal Physiology
- Renal Physiology (cont.)
- Biomechanics and Orthopedics
- Biomechanics and Orthopedics (cont.)
- Bioimaging
- Bioimaging (cont.)
- Tissue Engineering
- Tissue Engineering (cont.)
- Biomedical Engineers and Cancer
- Biomedical Engineers and Artificial Organs
Course Description
The course covers basic concepts of biomedical engineering and their connection with the spectrum of human activity. It serves as an introduction to the fundamental science and engineering on which biomedical engineering is based. Case studies of drugs and medical products illustrate the product development-product testing cycle, patent protection, and FDA approval. It is designed for science and non-science majors.