Building dataset 
Building dataset
by Harrison Kinsley
Video Lecture 4 of 16
Not yet rated
Views: 483
Date Added: August 11, 2016

Lecture Description

In this part of Data Analysis with Python and Pandas tutorial series, we're going to expand things a bit. Let's consider that we're multi-billionaires, or multi-millionaires, but it's more fun to be billionaires, and we're trying to diversify our portfolio as much as possible. We want to have all types of asset classes, so we've got stocks, bonds, maybe a money market account, and now we're looking to get into real estate to be solid. You've all seen the commercials right? You buy a CD for $60, attend some $500 seminar, and you're set to start making your 6 figure at a time investments into property, right?

Okay, maybe not, but we definitely want to do some research and have some sort of strategy for buying real estate. So, what governs the prices of homes, and do we need to do the research to find this out? Generally, no, you don't really need to do that digging, we know the factors. The factors for home prices are governed by: The economy, interest rates, and demographics. These are the three major influences in general for real estate value. Now, of course, if you're buying land, various other things matter, how level is it, are we going to need to do some work to the land before we can actually lay foundation, how is drainage etc. If there is a house, then we have even more factors, like the roof, windows, heating/AC, floors, foundation, and so on. We can begin to consider these factors later, but first we'll start at the macro level. You will see how quickly our data sets inflate here as it is, it'll blow up fast.

So, our first step is to just collect the data. Quandl still represents a great place to start, but this time let's automate the data grabbing. We're going to pull housing data for the 50 states first, but then we stand to try to gather other data as well. We definitely dont want to be manually pulling this data. First, if you do not already have an account, you need to get one. This will give you an API key and unlimited API requests to the free data, which is awesome.

Once you create an account, go to your account / me, whatever they are calling it at the time, and then find the section marked API key. That's your key, which you will need. Next, we want to grab the Quandl module. We really don't need the module to make requests at all, but it's a very small module, and the size is worth the slight ease it gives us, so might as well. Open up your terminal/cmd.exe and do pip install quandl (again, remember to specify the full path to pip if pip is not recognized).

Next, we're ready to rumble, open up a new editor.

Course Index

Course Description

In this 16-video tutorial series from, learn how to employ the Pandas library in Python to conduct data analysis operations. Pandas is a Python module, and Python is the programming language that we're going to use. The Pandas module is a high performance, highly efficient, and high level data analysis library.

At its core, it is very much like operating a headless version of a spreadsheet, like Excel. Most of the datasets you work with will be what are called dataframes. You may be familiar with this term already, it is used across other languages, but, if not, a dataframe is most often just like a spreadsheet. Columns and rows, that's all there is to it! From here, we can utilize Pandas to perform operations on our data sets at lightning speeds.


There are no comments. Be the first to post one.
  Post comment as a guest user.
Click to login or register:
Your name:
Your email:
(will not appear)
Your comment:
(max. 1000 characters)
Are you human? (Sorry)