Lecture Description
There is a latitudinal gradient of heat on the Earth caused by the tilt of the Earth’s axis with respect to the sun. This tilt produces seasonal fluctuations in heat input from the sun, as well as an excess of heat received on average annually near the equator. Heat is transferred poleward by both the ocean and atmosphere in an attempt to balance the Earth’s energy budget. The circulation of the Earth also causes a separation of the atmospheric circulation into three main circulation cells, each transporting heat towards the poles.
Course Index
- Introduction to Atmospheres
- Retaining an Atmosphere
- The Perfect Gas Law
- Vertical Structure of the Atmosphere; Residence Time
- Earth Systems Analysis (Tank Experiment)
- Greenhouse Effect, Habitability
- Hydrostatic Balance
- Horizontal Transport
- Water in the Atmosphere I
- Water in the Atmosphere II
- Clouds and Precipitation (Cloud Chamber Experiment)
- Circulation of the Atmosphere (Exam I review)
- Global Climate and the Coriolis Force
- Coriolis Force and Storms
- Convective Storms
- Frontal Cyclones
- Seasons and Climate
- Seasons and Climate Classification
- Ocean Bathymetry and Water Properties
- Ocean Bathymetry and Water Properties
- Ocean Water Density and Atmospheric Forcing
- Ocean Currents
- Ocean Currents and Productivity
- El Niño
- Ice in the Climate System
- Ice and Climate Change
- Isotope Evidence for Climate Change
- Global Warming
- Global Warming II
- Global Warming III
- Climate Sensitivity and Human Population
- The Two Ozone Problems
- The Ozone Layer
- Energy Resources, Renewable Energy
- Renewable Energy
- Review and Overview
- Lab - Quinnipiac River Field Trip
Course Description
This course explores the physical processes that control Earth's atmosphere, ocean, and climate. Quantitative methods for constructing mass and energy budgets. Topics include clouds, rain, severe storms, regional climate, the ozone layer, air pollution, ocean currents and productivity, the seasons, El Niño, the history of Earth's climate, global warming, energy, and water resources.