Citric Acid Cycle I 
Citric Acid Cycle I
by OSU
Video Lecture 1 of 25
Not yet rated
Views: 1,953
Date Added: February 15, 2015

Lecture Description

The following is a summary of my lecture. I provide it (and subsequent ones) for your information and not as a mechanism of dumping more information on you. Use them if they help you to recall the material. Otherwise, don't bother.

1. Both oxidative decarboxylation (in higher cells) and non-oxidative decarboxylation (in yeast) use an enzymatic activity called the pyryvate dehydrogenase complex to convert pyruvate from glycolysis into acetyl-Coa for the citric acid cycle. This enzyme complex is in the mitochondrion and requires that pyruvate from the cytoplasm be transported to the mitochondrion. This complex includes the following:

Pyruvate decarboxylase (your book calls it "Pyruvate Dehydrogenase Component" (E1)
Dihyrolipoamide transacetylase (E2)
Dihyrolipoamide dehydrogenase (E3)

It also uses the coenzymes, Thiamine Pyrophosphate (TPP), Lipoamide, NAD, FAD, and Coenzyme A (also called CoASH or CoA).

2. The mechanism of the reaction catalyzed by the complex is very similar to that catalyzed by the alpha-keto-glutarate dehydrogenase complex of the Citric Acid Cycle. Both involve oxidation of alpha-keto acids.

3. In aerobic higher organisms, the reaction mechanism involves binding of pyruvate by an ionized TPP, decarboxylation, transfer to the lipoamide molecules, linkage of the acetyl group to CoASH to form acetyl-CoA, transfer of the electrons from the oxidation to FAD (forming FADH2) and transfer of electrons from FADH2 to NAD+ to form NADH.

4. In yeast fermentation, the reaction that occurs stops at the decarboxylation step with resolution to form acetealdehyde without loss/gain of electrons (no oxidation/reduction). Thus, enzyme activities E2 and E3 above are not needed in yeast fermentation. Acetaldehye in yeast fermentation is converted to ethanol. Note that when oxygen is present, fermentation in yeast does not occur and activities E2 and E3 catalyze reactions just like animal cells, producing acetyl-CoA.

5. Mitochondria are the "power plants" of the cell and are the places where much oxidation occurs. Byproducts of this oxidation can result in damaged mitochondria. Mitochondria have an outer membrane (fairly permeable) an inner membrane (only permeable to water, carbon dioxide, oxygen, carbon monoxide) and a matrix (liquid component). Infoldings of the inner membrane are called cristae.

6. The citric acid cycle occurs in the mitochondrial matrix and is found in almost every cell. In the cycle, two carbons are added from acetyl-CoA and two carbons are released as carbon dioxide.

7. Biological oxidations in the citric acid cycle involve NAD+ (reduced to NADH) and FAD (reduced to FADH2). In the citric acid cycle, three NADH and one FADH2 are produced, along with one high energy phosphate (GTP in animals, ATP in plants and bacteria) per acetyl-CoA that enters the cycle (Remember that one molecule of glucose yields two acetyl-CoAs for the cycle).

8. The two carbons added from acetyl-CoA in the beginning of the cycle do NOT become oxidized to CO2 until beginning in the second time around the cycle.

Course Index

Course Description

This course in general biochemistry is intended to integrate information about metabolic pathways with respiration (respiratory control) and initiate the student into a microscopic world where blueprints are made of deoxyribonucleic acids, factories operate using enzymes, and the exchange rate is in ATPs rather than Yens or Euros. Beyond explaining terms, and iterating reactions and metabolic pathways, this course strives to establish that the same principles that govern the behavior of the world around us also govern the transactions inside this microscopic world of the living cell. And by studying and applying these principles, we begin to understand cellular and bodily processes that include sensory mechanisms.

Topics include:
1. Lipids, Membranes and Transport
2. Electron Transport, Oxidative Phosphorylation and Mitochondrial 3. Transport Systems
3. Lipid Metabolism
4. Nucleotide Metabolism
5. DNA Replication
6. Transcription
7. Translation

Comments

There are no comments. Be the first to post one.
  Post comment as a guest user.
Click to login or register:
Your name:
Your email:
(will not appear)
Your comment:
(max. 1000 characters)
Are you human? (Sorry)