Complex Number Addition and the Parallelogram Law. Use of Mathematica to create vectors. 
Complex Number Addition and the Parallelogram Law. Use of Mathematica to create vectors. by Bethel / Bill Kinney
Video Lecture 3 of 26
Not yet rated
Views: 475
Date Added: July 29, 2017

Lecture Description

Complex Analysis Video #3 (Complex Arithmetic, Part 3). Complex Addition and the Parallelogram Law. Use of Mathematica to create vectors.

Review of the Complex Plane and the geometric interpretation of complex addition. Mathematica code to emphasize the parallelogram law, both using line segments and vectors. Use Mathematica commands: Show, Graphics, Line, Arrow along with previous ones.

At 1:15, I should have said "seven plus eleven i" (instead of "seven plus five i")

Course Index

  1. The imaginary unit and how to add complex numbers
  2. Complex Addition and the Parallelogram Law. Use ListPlot on Mathematica to make the plot.
  3. Complex Number Addition and the Parallelogram Law. Use of Mathematica to create vectors.
  4. Complex Number Addition, Parallelogram Law, Triangle Inequality, and Manipulate on Mathematica
  5. Modulus of a Complex Number, Triangle Inequality, Manipulate and Locator on Mathematica
  6. Complex Number Subtraction in terms of Vectors, Manipulate and Locator on Mathematica
  7. Introduction to Multiplying Complex Numbers and Geometrically Interpreting the Product
  8. Complex Multiplication in terms of Moduli and Arguments. Use Mathematica to illustrate.
  9. Confirm the Geometry of Complex Number Multiplication with Manipulate and Locator. Principal Value.
  10. Complex Number Reciprocals (Multiplicative Inverses), approached Algebraically
  11. Complex Multiplicative Inverses, Complex Division, and Complex Conjugates
  12. Complex Conjugates, Complex Division, and Visualization on Mathematica.
  13. Introduction to the Polar Form of a Complex Number and Complex Multiplication
  14. Polar Form of Complex Numbers, both with "Cis" & with "e" (Euler's Formula)
  15. De Moivre's Formula and Trigonometric Identities (mistake at the end...see description below)
  16. De Moivre, Trig Identities, Sine and Cosine in Terms of Exponentials
  17. A Real Integral done using Complex Arithmetic (Euler's Formula)
  18. Check the use of Cosine as an Exponential to the Evaluation of an Integral.
  19. Powers of Complex Numbers (and an intro to "Table" on Mathematica).
  20. Using Mathematica to Visualize Powers of Complex Numbers
  21. Dynamic Behavior of Powers of Complex Numbers, Intro to Roots and Multi-Valued Functions
  22. Deriving and Graphing Complex Roots of Unity
  23. Graphing Complex Roots with Mathematica
  24. More on Visualizing Complex Roots with Mathematica
  25. Introduction to Basic Topology of the Complex Plane (Define an Open Disk)
  26. Open Sets in the Complex Plane and illustrating the definition with Mathematica

Course Description

This is a mini crash course providing all you need to know to understand complex numbers, and study Complex Analysis. Mathematica is used to help visualize the complex plane.

Comments

There are no comments. Be the first to post one.
  Post comment as a guest user.
Click to login or register:
Your name:
Your email:
(will not appear)
Your comment:
(max. 1000 characters)
Are you human? (Sorry)