   Complex Projective 2-Space as a Compact Complex Manifold of Dimension Two by
Video Lecture 47 of 48
Not yet rated
Views: 1,082 Lights Out New Window

### Lecture Description

Goals: - In Part A (Lec 47) of this lecture, we define complex projective 2-space and show how it can be turned into a two-dimensional complex manifold. In Part B (Lec 48), we show that any complex torus is holomorphically isomorphic to the natural Riemann surface structure on the associated elliptic algebraic cubic plane projective curve embedded in complex projective 2-space Topics: Upper half-plane, complex torus associated to a lattice (or) grid in the plane, fundamental parallelogram associated to a lattice, doubly-periodic meromorphic function (or) elliptic function associated to a lattice, Weierstrass phe-function associated to a lattice, ordinary differential equation satisfied by the Weierstrass phe-function, zeros of the derivative of the Weierstrass phe-function, pole of order two (or) double pole with residue zero, triple pole (or) pole of order three, cubic equation, elliptic algebraic cubic curve, zeros of a polynomial equation, bicontinuous map (or) homeomorphism, open map, order of an elliptic function, elliptic integral, Argument principle, even function, odd function, analytic branch of the square root, simply connected, punctured torus, elliptic algebraic affine cubic plane curve, projective plane cubic curve, complex affine two-space, complex projective two-space, one-point compactification by adding a point at infinity, Implicit function theorem, graph of a holomorphic function, nonsingular (or) smooth polynomial in two variables, zero locus of a polynomial, solving an implicit equation locally for an explicit function, nonsingular (or) smooth point of the zero locus of a polynomial in two variables, Hausdorff, second countable, connected component, nonsingular cubic polynomial, discriminant of a polynomial, cubic discriminant, homogeneous coordinates on projective 2-space, punctured complex 3-space, quotient topology, open map, complex two-dimensional manifold (or) complex surface, complex one-dimensional manifold (or) Riemann surface, complex coordinate chart in two complex variables, holomorphic (or) complex analytic function of two complex variables, glueing of Riemann surfaces, glueing of complex planes, zero set of a homogeneous polynomial in projective space, degree of homogeneity, Euler's formula for homogeneous functions, homogenisation, dehomogenisation, a complex curve is a real surface, a complex surface is a real 4-manifold

### Course Description

The subject of algebraic curves (equivalently compact Riemann surfaces) has its origins going back to the work of Riemann, Abel, Jacobi, Noether, Weierstrass, Clifford and Teichmueller. It continues to be a source for several hot areas of current research. Its development requires ideas from diverse areas such as analysis, PDE, complex and real differential geometry, algebra---especially commutative algebra and Galois theory, homological algebra, number theory, topology and manifold theory. The course begins by introducing the notion of a Riemann surface followed by examples. Then the classification of Riemann surfaces is achieved on the basis of the fundamental group by the use of covering space theory and uniformisation. This reduces the study of Riemann surfaces to that of subgroups of Moebius transformations. The case of compact Riemann surfaces of genus 1, namely elliptic curves, is treated in detail. The algebraic nature of elliptic curves and a complex analytic construction of the moduli space of elliptic curves is given.