   Conformality, Riemann Mapping Theorem, Vector Fields, Integration by
Video Lecture 21 of 35
Not yet rated
Views: 1,141 Lights Out New Window

### Lecture Description

Pictures of the class were being taken the first few minutes. Also sorry about the clicking noises from the camera tripod. (0:00) Upcoming schedule and project information. (1:11) Amplitwist and Chain-Rule related reasoning for why analytic mappings are conformal when the derivative is nonzero. (7:10) Riemann mapping theorem statement. (10:43) Prelude to complex integration: complex-valued functions as vector fields and their graphs. (17:03) The vector field "rotates" around circles, and this can be used to define the index of a vector field at a singularity (which can be taken to be a zero or a pole). (25:36) It will be more natural to view complex functions as vector fields for the purposes of integration and the applications will switch over to work done by a force, flux of a (2-dimensional) fluid flow across a curve (1-dimensional) membrane. (26:56) The squaring function as a vector field. (28:41) Integrating a complex function over a (parabolic) contour via a parameterization. (37:43) Doing the same integral with the complex version of the Fundamental Theorem of Calculus. (42:23) Approximating the answer via a Riemann sum and a start at visualizing it.

### Course Description

Based on "Fundamentals of Complex Analysis, with Applications to Engineering and Science", by E.B. Saff and A.D. Snider (3rd Edition). "Visual Complex Analysis", by Tristan Needham, is also referred to a lot. Mathematica is often used, especially to visualize complex analytic (conformal) mappings.