
Lecture Description
It is of great importance that the ideas of ENERGY and MOMENTUM be clearly
distinguished and understood. Mathematically, momentum is M x V or MV.
Energy - more exactly kinetic energy - is 1/2 MV^. We need not worry here
where the 1/2 comes from. Momentum is the consequence of a force acting for
a time: F x t. Energy is the consequence of a force acting over a distance: ___
Thus it is with the two cars:
The force acting on both cars is the same. The force acts for the same time on both. The force acts for a greater distance on the little car and for a lesser distance on the bigger car.
Accordingly: The F x t is the same for both.
Therefore their momenta are equal. The F x S for the little car is greater than the F x s for the bigger car. Therefore their energies are UNequal.
We show an array of DEMONSTRATIONS bearing on ENERGY and MOMENTUM.
1 - On a curved track the ball can go no higher to a remote end than the height
from which it was released.
2 - We drive a nail into a block of wood. The energy delivered to the system
by the moving hammer is spent in splitting the wood and raising the temperature of the nail and the wood. Friction always produces heat.
3 - We demonstrate acoustic energy which arises from the mechanical energy
of my moving vocal cords.
4 - Thermal energy communicated to a kernel ,of corn makes it "pop" . The
expansion of the water in the corn is enormous.
5 - We rub a rod of bakelite (hard-rubber) with a piece of fur. This mechanical
work separates the electric charges and "creates" electrostatic energy.
6 - A pile-driver delivers the potential energy of the driver to the nail.
7 - A spring is compressed; potential energy is stored. This energy can push
a ball upward when the spring "recovers" .
8 - In shooting a gun we hold it tightly against the shoulder so the "kick"
less.
9 - A child's toy stores "elastic" energy in a wound-up rubber band. This
stored energy can drive the car backwards.
10 - A geared-wheel is turned by mechanical force. The energy thus stored can heat a metal to incandescence - that is - hot enough to emit light, Thus mechanical energy produces heat and light.
We show a likeness of Christiaan Huygens, a Dutchman, who contributed to our understanding of these things.
Course Index
- The Idea of the Center of Gravity
- Newton's First Law of Motion: Inertia
- Newton's Second Law of Motion: The Elevator Problem
- Newton's Third Law of Motion: Momentum
- Energy and Momentum
- Concerning Falling Bodies & Projectiles
- The Simple Pendulum and Other Oscillating Things
- Adventures with Bernoulli: Bernoulli's Principle
- Soap Bubbles and Soap Films
- Atmospheric Pressure
- Centrifugal Force and Other Strange Matters
- The Strange Behavior of Rolling Things
- Archimedes' Principle
- Pascal's Principle: The Properties of Liquids
- Levers, Inclines Planes, Geared-wheels and Other Machines
- The Ideas of Heat and Temperature
- Thermometric Properties and Processes
- How to Produce Heat Energy
- Thermal Expansion of Stuff: Solids
- Thermal Expansion of Stuff: Gases & Liquids
- The Strange Thermal Behavior of Ice and Water
- Heat Energy Transfer by Conduction
- Heat Energy Transfer by Convection
- Heat Energy Transfer by Radiation
- Evaporation, Boiling, Freezing: A Dramatic Adventure
- Miscellaneous Adventures in Heat
- The Drama in Real Cold Stuff: Liquid Nitrogen
- The Physics of Toys: Mechanical
- The Physics of Toys: Acoustic and Thermal
- Waves: Kinds of Properties
- Sound Waves: Sources of Sound & Pitch and Frequency
- Vibrating Bars and Strings: The Phenomenon of Beats
- Resonance: Forced Vibrations
- Sounding Pipes
- Vibrating Rods and Plates
- Miscellaneous Adventures in Sound
- Electrostatic Phenomena: Foundations of Electricity
- Electrostatic Toys, Part 1
- Electrostatic Toys, Part 2
- Adventures with Electric Charges
- Adventures in Magnetism
- Ways to "Produce" Electricity
- Properties and Effects of Electric Currents
- Adventures in Electromagnetism
- Further Adventures in Electromagnetism
- Miscellaneous and Wondrous Things in E&M
Course Description
Demonstrations in Physics was an educational science series produced in Australia by ABC Television in 1969. The series was hosted by American scientist Julius Sumner Miller, who demonstrated experiments involving various disciplines in the world of physics. The series was also released in the United States under the title Science Demonstrations.
This program was a series of 45 shows (approximately 15 minutes each) on various topics in physics, organized into 3 units: Mechanics; Heat and Temperature / Toys; and Waves and Sound / Electricity and Magnetism.