Interacting Particles V: Mean field theory of Condensation 
Interacting Particles V: Mean field theory of Condensation
by MIT
Video Lecture 19 of 26
Copyright Information: Mehran Kardar. 8.333 Statistical Mechanics I: Statistical Mechanics of Particles, Fall 2013. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed 4 Apr, 2016). License: Creative Commons BY-NC-SA
Not yet rated
Views: 1,077
Date Added: January 20, 2015

Lecture Description

Topics: Mean field theory of condensation, Corresponding states, Critical point behavior (from L17 & L18)

Course Index

Course Description

This is a two-semester course on statistical mechanics. Basic principles examined in this course are: The laws of thermodynamics and the concepts of temperature, work, heat, and entropy, postulates of classical statistical mechanics, microcanonical, canonical, and grand canonical distributions; applications to lattice vibrations, ideal gas, photon gas, quantum statistical mechanics; Fermi and Bose systems, interacting systems: Cluster expansions, van der Waal's gas, and mean-field theory.

Topics from modern statistical mechanics are explored in the next course in this sequence, 8.334 Statistical Mechanics II. These include: The hydrodynamic limit and classical field theories; phase transitions and broken symmetries: Universality, correlation functions, and scaling theory; the renormalization approach to collective phenomena; dynamic critical behavior; random systems.

Comments

There are no comments. Be the first to post one.
  Post comment as a guest user.
Click to login or register:
Your name:
Your email:
(will not appear)
Your comment:
(max. 1000 characters)
Are you human? (Sorry)