Knots and Surfaces (Part II) 
Knots and Surfaces (Part II)
by UNSW / N.J. Wildberger
Video Lecture 24 of 26
Not yet rated
Views: 1,116
Date Added: July 28, 2011

Lecture Description

In this video lecture, Prof. N.J. Wildberger talks about knots and surfaces. 

In the 1930's H. Siefert showed that any knot can be viewed as the boundary of an orientable surface with boundary, and gave a relatively simple procedure for explicitly constructing such `Seifert surfaces'. We show the algorithm, exhibit it for the trefoil and the square knot, and then discuss Euler numbers for surfaces with boundaries.

Course Index

Course Description

In this course, Prof. N.J. Wildberger gives 26 video lectures on Algebraic Topology.  This is a beginner's course in Algebraic Topology given by Assoc. Prof. N J Wildberger of the School of Mathematics and Statistics, UNSW. It features a visual approach to the subject that stresses the importance of familiarity with specific examples. It also introduces 'rational curvature', a simple but important innovation. NJ Wildberger is also the developer of Rational Trigonometry: a new and better way of learning and using trigonometry.


There are no comments. Be the first to post one.
  Post comment as a guest user.
Click to login or register:
Your name:
Your email:
(will not appear)
Your comment:
(max. 1000 characters)
Are you human? (Sorry)