Lecture Description
(0:00) Quiz due by next class period. (0:37) Mathematica project idea (connecting centers of opposing squares constructed on the sides of a quadrilateral generates line segments that are perpendicular). (4:54) The precise connection between complex planar mappings and real planar mappings. (10:21) Linearity for real planar mappings and complex planar mappings. (19:44) The squaring mapping f(z) = z^2, first, for a particular input. (23:34) The real and imaginary parts for f(z) = z^2 and the corresponding real planar mapping. (25:26) Start to explore the mapping properties of f(z) = z^2 by determining the image of the vertical line x = 3. (37:50) Euler's identity derivation via Taylor series centered at zero. (44:52) Derivation using the chain rule and differential equations. (49:56) Defining e^(z) for an arbitrary complex number z. (51:20) Geometric interpretation of the series definition on Mathematica. (56:04) Make sure you know the polar form of complex numbers in terms of the complex exponential, De Moivre's formula, and applications to trigonometric identities and integrals.
Course Index
- Complex Arithmetic, Cardano's Formula
- Geometric Interpretations of Complex Arithmetic, Triangle Inequality
- Polar Form, Principal Value of Arg, Basic Mappings
- Mappings, Linear Mappings, Squaring Map, Euler's Identity
- Squaring Mapping, Euler's Identity & Trigonometry, 5th Roots Example
- Exponential Map on Mathematica, Squaring Map, Intro to Topology
- Exponential & Reciprocal Maps, Domains, Derivative Limit Calculations
- Topological Definitions, Limits, Continuity, Linear Approximation
- Facts to Recall, Animations, Continuity Proofs (z^2 and 1/z)
- Open Disks are Open, Derivatives, Analyticity, Linear Approximations
- Areas of Images, Differentiability, Analyticity, Cauchy-Riemann Eqs
- Cauchy-Riemann Eqs (Rectangular & Polar), Intro Harmonic Functions
- Preimages, Laplace's Equation, Harmonic and Analytic Functions
- Preimages, Mathematica, Maximum Principle (Harmonic), Polynomials
- Review Analytic Functions, Amplitwist Concept, Harmonic Functions
- Taylor Polynomials, Complex Exponential, Trig & Hyperbolic Functions
- Complex Logarithm, Functions as Sets, Multivalued Functions
- Branches of Arg, Harmonic Functions over Washers, Wedges and Walls
- Complex Powers, Inverse Trigonometric Functions, Branch Cuts
- Invariance of Laplace's Eq, Real & Im Parts of Complex Integrals
- Conformality, Riemann Mapping Theorem, Vector Fields, Integration
- Complex Integrals, Cauchy-Goursat Theorem, Quick Exam 2 Review
- Real Line Integrals and Applications, Complex Integration
- Integration, Cauchy-Goursat Theorem, Cauchy Integral Formula
- Cauchy Integral Formula, Applications, Liouville's Theorem
- Sequences and Series of Functions, Maximum Modulus on Mathematica
- Review Cauchy's Theorem, Cauchy Integral Formulas, and Corollaries
- Taylor Series Computations, Graphs of Partial Sums, Ratio Test
- Uniform Convergence, Taylor Series Facts
- Laurent Series Calculations, Visualize Convergence on Mathematica
- Laurent Series, Poles, Essential Singularities
- More Laurent Series, Review Integrals & Cauchy Integral Formula
- Integrating 1/(1+z^2), Mathematica programming, Residues
- Series, Zeros, Isolated Singularities, Residues, Residue Theorem
- Residue Theorem Examples, Principal Values of Improper Integrals
Course Description
Based on "Fundamentals of Complex Analysis, with Applications to Engineering and Science", by E.B. Saff and A.D. Snider (3rd Edition). "Visual Complex Analysis", by Tristan Needham, is also referred to a lot. Mathematica is often used, especially to visualize complex analytic (conformal) mappings.