
Lecture Description
We'll be using the numpy module to convert data to numpy arrays, which is what Scikit-learn wants. We will talk more on preprocessing and cross_validation when we get to them in the code, but preprocessing is the module used to do some cleaning/scaling of data prior to machine learning, and cross_ alidation is used in the testing stages. Finally, we're also importing the LinearRegression algorithm as well as svm from Scikit-learn, which we'll be using as our machine learning algorithms to demonstrate results.
At this point, we've got data that we think is useful. How does the actual machine learning thing work? With supervised learning, you have features and labels. The features are the descriptive attributes, and the label is what you're attempting to predict or forecast. Another common example with regression might be to try to predict the dollar value of an insurance policy premium for someone. The company may collect your age, past driving infractions, public criminal record, and your credit score for example. The company will use past customers, taking this data, and feeding in the amount of the "ideal premium" that they think should have been given to that customer, or they will use the one they actually used if they thought it was a profitable amount.
Thus, for training the machine learning classifier, the features are customer attributes, the label is the premium associated with those attributes.
pythonprogramming.net
twitter.com/sentdex
www.facebook.com/pythonprogramming.net/
plus.google.com/+sentdex
Course Index
- Introduction to Machine Learning
- Regression Intro
- Regression Features and Labels
- Regression Training and Testing
- Regression forecasting and predicting
- Pickling and Scaling
- Regression How it Works
- How to program the Best Fit Slope
- How to program the Best Fit Line
- R Squared Theory
- Programming R Squared
- Testing Assumptions
- Classification w/ K Nearest Neighbors Intro
- K Nearest Neighbors Application
- Euclidean Distance
- Creating Our K Nearest Neighbors A
- Writing our own K Nearest Neighbors in Code
- Applying our K Nearest Neighbors Algorithm
- Final thoughts on K Nearest Neighbors
- Support Vector Machine Intro and Application
- Understanding Vectors
- Support Vector Assertion
- Support Vector Machine Fundamentals
- Support Vector Machine Optimization
- Creating an SVM from scratch
- SVM Training
- SVM Optimization
- Completing SVM from Scratch
- Kernels Introduction
- Why Kernels
- Soft Margin SVM
- Soft Margin SVM and Kernels with CVXOPT
- SVM Parameters
- Clustering Introduction
- Handling Non-Numeric Data
- K Means with Titanic Dataset
- Custom K Means
- K Means from Scratch
- Mean Shift Intro
- Mean Shift with Titanic Dataset
- Mean Shift from Scratch
- Mean Shift Dynamic Bandwidth
Course Description
The objective of this course is to give you a holistic understanding of machine learning, covering theory, application, and inner workings of supervised, unsupervised, and deep learning algorithms.
In this series, we'll be covering linear regression, K Nearest Neighbors, Support Vector Machines (SVM), flat clustering, hierarchical clustering, and neural networks.