
Lecture Description
Welcome to the seventh part of our machine learning regression tutorial within our Machine Learning with Python tutorial series. Up to this point, you have been shown the value of linear regression and how to apply it with Scikit Learn and Python, now we're going to dive into how it is calculated. While I do not believe it is necessary to dig into all of the math that goes into every machine learning algorithm (have you dug into the source code of your other favorite modules to see how they do every little thing?), linear algebra is essential to machine learning, and it is useful to understand the true building blocks that machine learning is built upon.
The objective of linear algebra is to calculate relationships of points in vector space. This is used for a variety of things, but one day, someone got the wild idea to do this with features of a dataset. We can too! Remember before when we defined the type of data that linear regression was going to work on was called "continuous" data? This is not so much due to what people just so happen to use linear regression for, it is due to the math that makes it up. Simple linear regression is used to find the best fit line of a dataset. If the data isn't continuous, there really isn't going to be a best fit line
pythonprogramming.net
twitter.com/sentdex
www.facebook.com/pythonprogramming.net/
plus.google.com/+sentdex
Course Index
- Introduction to Machine Learning
- Regression Intro
- Regression Features and Labels
- Regression Training and Testing
- Regression forecasting and predicting
- Pickling and Scaling
- Regression How it Works
- How to program the Best Fit Slope
- How to program the Best Fit Line
- R Squared Theory
- Programming R Squared
- Testing Assumptions
- Classification w/ K Nearest Neighbors Intro
- K Nearest Neighbors Application
- Euclidean Distance
- Creating Our K Nearest Neighbors A
- Writing our own K Nearest Neighbors in Code
- Applying our K Nearest Neighbors Algorithm
- Final thoughts on K Nearest Neighbors
- Support Vector Machine Intro and Application
- Understanding Vectors
- Support Vector Assertion
- Support Vector Machine Fundamentals
- Support Vector Machine Optimization
- Creating an SVM from scratch
- SVM Training
- SVM Optimization
- Completing SVM from Scratch
- Kernels Introduction
- Why Kernels
- Soft Margin SVM
- Soft Margin SVM and Kernels with CVXOPT
- SVM Parameters
- Clustering Introduction
- Handling Non-Numeric Data
- K Means with Titanic Dataset
- Custom K Means
- K Means from Scratch
- Mean Shift Intro
- Mean Shift with Titanic Dataset
- Mean Shift from Scratch
- Mean Shift Dynamic Bandwidth
Course Description
The objective of this course is to give you a holistic understanding of machine learning, covering theory, application, and inner workings of supervised, unsupervised, and deep learning algorithms.
In this series, we'll be covering linear regression, K Nearest Neighbors, Support Vector Machines (SVM), flat clustering, hierarchical clustering, and neural networks.