Rolling Apply and Mapping Functions 
Rolling Apply and Mapping Functions
by Harrison Kinsley
Video Lecture 15 of 16
Not yet rated
Views: 3,185
Date Added: August 11, 2016

Lecture Description

In this data analysis with Python and Pandas tutorial, we cover function mapping and rolling_apply with Pandas.

The idea of function mapping and rolling apply is to allow you to fully customize Pandas to do whatever you need. If there isn't a pre-built method or function for you to run against to your dataframe to do analysis or manipulation, you can use function mapping, creating your own function entirely.

Sample code and text-based version of this tutorial:

If you need to do something similar to this, but in a rolling fashion with a moving window, then you can do this with rolling_apply. Both will be covered here.

Course Index

Course Description

In this 16-video tutorial series from, learn how to employ the Pandas library in Python to conduct data analysis operations. Pandas is a Python module, and Python is the programming language that we're going to use. The Pandas module is a high performance, highly efficient, and high level data analysis library.

At its core, it is very much like operating a headless version of a spreadsheet, like Excel. Most of the datasets you work with will be what are called dataframes. You may be familiar with this term already, it is used across other languages, but, if not, a dataframe is most often just like a spreadsheet. Columns and rows, that's all there is to it! From here, we can utilize Pandas to perform operations on our data sets at lightning speeds.


There are no comments. Be the first to post one.
  Post comment as a guest user.
Click to login or register:
Your name:
Your email:
(will not appear)
Your comment:
(max. 1000 characters)
Are you human? (Sorry)