
Lecture Description
We learn in the Physics books that the Period - the time for one complete round-trip - of a Simple Pendulum - is given by this mathematics:
T = 2piSqrt(L/g)
This means that the time of oscillation is governed by the squareroot of the length and by g - that is - where on the Earth or on the Moon - do we clock it. ANY body can oscillate as a pendulum - say a rod - and this we call a Physical Pendulum. Every Physical Pendulum has an Equivalent Simple Pendulum - that is, a simple pendulum which keeps in phase with the motion of the Physical Pendulum. A loaded spring also oscillates with a Period governed by how stiff the spring is and what the load on it is. Oscillating bodies can be coupled with other oscillating bodies - that is - connected with them.
A- We show three Simple Pendulums of lengths 10, 40, 90 cm. We clock equal numbers of oscillations. The times come out to be very interest¬ing! In the ratio of 1:2:3.
B - Since the "formula" for the period of a simple pendulum does NOT involve the mass of the bob we show several pendulums with bobs of different size and mass.
C - We show in turn - a prismatic rod; a hoop; a disk. These all execute oscillatory motion as physical pendulums., The rod has special enchant¬ing properties: It has the same period at a point 2/3 its length as it does at its very end! And this tells us why a bat stings the hand sometimes!
D - We show an array of loaded springs - alone and coupled. The period of a loaded spring is given mathematically by
T = 2piSqrt(M/k)
where M is the load on the spring and k is its modulus - that is - a number which tells us how stiff it is.
A special interesting problem arises: If a spring of length L has a modulus k - what is the modulus of half such a spring? It turns out to be 2k -which is very exciting to know.
The genius Robert Hooke - who was a contemporary of Isaac Newton - discovered the Law of the Spring. He wrote it as an anagram in this way:
ceiiinosssttuv
And why did he write it this way? Because he was afraid Newton would steal it! The anagram reads
Ut tensio sic vis As the extension so the force.
Course Index
- The Idea of the Center of Gravity
- Newton's First Law of Motion: Inertia
- Newton's Second Law of Motion: The Elevator Problem
- Newton's Third Law of Motion: Momentum
- Energy and Momentum
- Concerning Falling Bodies & Projectiles
- The Simple Pendulum and Other Oscillating Things
- Adventures with Bernoulli: Bernoulli's Principle
- Soap Bubbles and Soap Films
- Atmospheric Pressure
- Centrifugal Force and Other Strange Matters
- The Strange Behavior of Rolling Things
- Archimedes' Principle
- Pascal's Principle: The Properties of Liquids
- Levers, Inclines Planes, Geared-wheels and Other Machines
- The Ideas of Heat and Temperature
- Thermometric Properties and Processes
- How to Produce Heat Energy
- Thermal Expansion of Stuff: Solids
- Thermal Expansion of Stuff: Gases & Liquids
- The Strange Thermal Behavior of Ice and Water
- Heat Energy Transfer by Conduction
- Heat Energy Transfer by Convection
- Heat Energy Transfer by Radiation
- Evaporation, Boiling, Freezing: A Dramatic Adventure
- Miscellaneous Adventures in Heat
- The Drama in Real Cold Stuff: Liquid Nitrogen
- The Physics of Toys: Mechanical
- The Physics of Toys: Acoustic and Thermal
- Waves: Kinds of Properties
- Sound Waves: Sources of Sound & Pitch and Frequency
- Vibrating Bars and Strings: The Phenomenon of Beats
- Resonance: Forced Vibrations
- Sounding Pipes
- Vibrating Rods and Plates
- Miscellaneous Adventures in Sound
- Electrostatic Phenomena: Foundations of Electricity
- Electrostatic Toys, Part 1
- Electrostatic Toys, Part 2
- Adventures with Electric Charges
- Adventures in Magnetism
- Ways to "Produce" Electricity
- Properties and Effects of Electric Currents
- Adventures in Electromagnetism
- Further Adventures in Electromagnetism
- Miscellaneous and Wondrous Things in E&M
Course Description
Demonstrations in Physics was an educational science series produced in Australia by ABC Television in 1969. The series was hosted by American scientist Julius Sumner Miller, who demonstrated experiments involving various disciplines in the world of physics. The series was also released in the United States under the title Science Demonstrations.
This program was a series of 45 shows (approximately 15 minutes each) on various topics in physics, organized into 3 units: Mechanics; Heat and Temperature / Toys; and Waves and Sound / Electricity and Magnetism.