
Lecture Description
We've been learning about regression, and even coded our own very simple linear regression algorithm. Along with that, we've also built a coefficient of determination algorithm to check for the accuracy and reliability of our best-fit line. We've discussed and shown how a best-fit line may not be a great fit, but also explained why our example was correct directionally, even if it was not exact. Now, however, we are at the point where we're using two top-level algorithms, which are subsequently comprised of a handful of smaller algorithms. As we continue building this hierarchy of algorithms, we might wind up finding ourselves in trouble if just one of them have a tiny error, so we want to test our assumptions.
pythonprogramming.net/sample-data-testing-machine-learning-tutorial/
twitter.com/sentdex
www.facebook.com/pythonprogramming.net/
plus.google.com/+sentdex
Course Index
- Introduction to Machine Learning
- Regression Intro
- Regression Features and Labels
- Regression Training and Testing
- Regression forecasting and predicting
- Pickling and Scaling
- Regression How it Works
- How to program the Best Fit Slope
- How to program the Best Fit Line
- R Squared Theory
- Programming R Squared
- Testing Assumptions
- Classification w/ K Nearest Neighbors Intro
- K Nearest Neighbors Application
- Euclidean Distance
- Creating Our K Nearest Neighbors A
- Writing our own K Nearest Neighbors in Code
- Applying our K Nearest Neighbors Algorithm
- Final thoughts on K Nearest Neighbors
- Support Vector Machine Intro and Application
- Understanding Vectors
- Support Vector Assertion
- Support Vector Machine Fundamentals
- Support Vector Machine Optimization
- Creating an SVM from scratch
- SVM Training
- SVM Optimization
- Completing SVM from Scratch
- Kernels Introduction
- Why Kernels
- Soft Margin SVM
- Soft Margin SVM and Kernels with CVXOPT
- SVM Parameters
- Clustering Introduction
- Handling Non-Numeric Data
- K Means with Titanic Dataset
- Custom K Means
- K Means from Scratch
- Mean Shift Intro
- Mean Shift with Titanic Dataset
- Mean Shift from Scratch
- Mean Shift Dynamic Bandwidth
Course Description
The objective of this course is to give you a holistic understanding of machine learning, covering theory, application, and inner workings of supervised, unsupervised, and deep learning algorithms.
In this series, we'll be covering linear regression, K Nearest Neighbors, Support Vector Machines (SVM), flat clustering, hierarchical clustering, and neural networks.