
Lecture Description
goo.gl/mnD4Od for more FREE video tutorials covering Mechanics of Solids and Structural Mechanics
The objective of this video is to examine the temperature effects on structural elements. First part of the video clears the conception of temperature effects on materials stating that many materials expand & contract with changes of temperature. Subsequently, the video explains the phenomenon graphically considering an element having length L which increases length by the amount L with the application of certain amount of heat. Generally, the heating causes expansion whereas cooling causes contraction for most of the materials used as structural elements.
Moving on, the video introduces the theory of temperature effects on structural materials stating that an unrestrained length of a bar will expand by the amount equal to the product of coefficient of thermal expansion of a material times the temperature difference. Later, the video talks about the unit of coefficient of thermal expansion and displays the values of coefficient of thermal expansion of common materials e.g., steel, copper, aluminum and concrete etc. widely used in construction.
Course Index
- Mohr's Circle Example
- Von Mises & Trescas Yield Criterion Example
- Von Mises Yield Criterion
- Tresca's Yield Criterion
- Mohr's Circle Summary Example
- Combined, Normal and Shear Stress Example
- Mohr's Circle Equations & Theory
- Combined Shear Stress & Mohr's Circle
- Analysis of Combined Stress
- Closed Pipe, Hoop and Longitdunal Stress Pressure Vessel Example
- Open Pipe, Hoop and Longitdunal Stress Pressure Vessel Example
- Longitudinal Stresss in Pressure Vessels
- Hoop & Cylinder Stress in Pressure Vessels
- Cantilever Beam with Point Load at Free Edge Deflection Example
- Cantilever Beam with Moment at Free Edge Deflection Example
- Cantilever Beam Deflection Example
- Simply Supported Beam Deflection Example
- Beam Delfection Equations
- Beam Deflection Theory
- Torque & Torsion Summary Example
- Torsion on a Non-Circular Shaft Example
- Uniform Torque on a Cylindrical Shaft Example
- Torsion and Torque Equations
- Torsion Shear Strain and Stress Distributions
- Method of Transformed Sections (Beams of 2 Materials) Steel a
- Method of Transformed Sections (Beams of 2 Materials) Reinforced
- Method of Transformed Sections (Beams of 2 Materials) Reinforced
- Method of Transformed Sections (Beams of 2 Materials) Timber Beam Example
- Method of Transformed Sections (Beams of 2 Materials) Example
- Method of Transformed Sections (Beams of 2 Materials)
- Beam Composite Actions: Stress and Strains
- I-beam Centroid, Second Moment of Area (I-Value), Stress & Strai
- Example 8 Centroid Hollow section, I Value + Stresses due to bending
- C-Section Stress & Strain Distributions from Bending
- I-Beam Stress & Strain Distributions from Bending
- Bending of Beams: Stress & Strain Distributions (about y-axis)
- Bending of Beams: Stress & Strain Distributions
- Channel Section Centroid & Second Moment of Area (I value) Example
- Second Moment of Area (Iy value) of Band Beam Example
- Second Moment of Area (Ix value) of Band Beam Example
- Centroid of Band Beam Example
- Centroid of I-Beam Example
- Axial Loading & Temperature Effects
- Axial Loading of a Composite Structural Member
- Axial Loading Example
- Stress & Strain: Non Linear, Ductile and Brittle Behaviour
- Stress & Strain Diagram
- Strain & Poisson's Ratio
- Normal & Shear Stress
- Stress, Strain, Strength, Stiffness & Defomation
- Twisting Moment Diagram Example
- Example 5: Axial Force, Shear Force and Bending Momemt Diagram (2/2)
- Example 5: Axial Force, Shear Force and Bending Momemt Diagram (1/2)
- Example 4: Axial Force, Shear Force and Bending Momemt Diagram (2/2)
- Example 4: Axial Force, Shear Force and Bending Momemt Diagram (1/2)
- Example 3: Axial Force, Shear Force and Bending Momemt Diagram (2/2)
- Example 3: Axial Force, Shear Force and Bending Momemt Diagram (1/2)
- Example 2: Axial Force, Shear Force and Bending Momemt Diagram (2/2)
- Axial Force, Shear Force and Bending Momemt Diagram Example 2 (1/2)
- Axial Force, Shear Force and Bending Momemt Diagram Example 1
- Relationships Between Bending, Shear and Axial Forces
- Axial Force Diagram, Shear Force Diagram & Bending Moment Diagram
- Equilibrium & Free Body Diagram Example 2
- Equilibrium & Free Body Diagram Example 1
- Equilibrium & Free Body Diagrams
- Loads, Transfer of Forces & Supports
- Simply Supported Beam Deflection from Loading Function Example
Course Description
This course builds on the concept of force and moment equilibrium learnt from first year engineering mechanic and physics courses and focuses on the internal actions and deformations experienced by simple structural members under loading. Concepts learnt in the course such as load transfer through axial, shear, bending and torsion as well as stress and strain relationships are the foundation for further study in any structural engineering related courses.