
Lecture Description
goo.gl/t9Baud for more FREE video tutorials covering Mechanics of Solids and Structural Mechanics
This video shows a workout on a comprehensive example of finding the coordinates of centroid for an I-section structural element. Very first, the video illustrates the given exemplary I section having two flanges at top and bottom side of the I-section and a vertical bar element connecting the two flanges followed by the demonstration on the given dimension of the I-section structural element. Next, the video introduces with the formula of finding the centroid coordinate position.
According to the formula, the x coordinate of the structural element is equal to the ratio of ‘the sum of product of individual area times individual centroid x coordinate’ and the sum of individual area. And the y coordinate is equal to the ratio of ‘the sum of product of individual area times individual centroid y coordinate’ and the sum of individual area. Moving on, the video shows the calculation of finding centroid coordinate for the given I-section explaining all the facts and figures in details.
Course Index
- Mohr's Circle Example
- Von Mises & Trescas Yield Criterion Example
- Von Mises Yield Criterion
- Tresca's Yield Criterion
- Mohr's Circle Summary Example
- Combined, Normal and Shear Stress Example
- Mohr's Circle Equations & Theory
- Combined Shear Stress & Mohr's Circle
- Analysis of Combined Stress
- Closed Pipe, Hoop and Longitdunal Stress Pressure Vessel Example
- Open Pipe, Hoop and Longitdunal Stress Pressure Vessel Example
- Longitudinal Stresss in Pressure Vessels
- Hoop & Cylinder Stress in Pressure Vessels
- Cantilever Beam with Point Load at Free Edge Deflection Example
- Cantilever Beam with Moment at Free Edge Deflection Example
- Cantilever Beam Deflection Example
- Simply Supported Beam Deflection Example
- Beam Delfection Equations
- Beam Deflection Theory
- Torque & Torsion Summary Example
- Torsion on a Non-Circular Shaft Example
- Uniform Torque on a Cylindrical Shaft Example
- Torsion and Torque Equations
- Torsion Shear Strain and Stress Distributions
- Method of Transformed Sections (Beams of 2 Materials) Steel a
- Method of Transformed Sections (Beams of 2 Materials) Reinforced
- Method of Transformed Sections (Beams of 2 Materials) Reinforced
- Method of Transformed Sections (Beams of 2 Materials) Timber Beam Example
- Method of Transformed Sections (Beams of 2 Materials) Example
- Method of Transformed Sections (Beams of 2 Materials)
- Beam Composite Actions: Stress and Strains
- I-beam Centroid, Second Moment of Area (I-Value), Stress & Strai
- Example 8 Centroid Hollow section, I Value + Stresses due to bending
- C-Section Stress & Strain Distributions from Bending
- I-Beam Stress & Strain Distributions from Bending
- Bending of Beams: Stress & Strain Distributions (about y-axis)
- Bending of Beams: Stress & Strain Distributions
- Channel Section Centroid & Second Moment of Area (I value) Example
- Second Moment of Area (Iy value) of Band Beam Example
- Second Moment of Area (Ix value) of Band Beam Example
- Centroid of Band Beam Example
- Centroid of I-Beam Example
- Axial Loading & Temperature Effects
- Axial Loading of a Composite Structural Member
- Axial Loading Example
- Stress & Strain: Non Linear, Ductile and Brittle Behaviour
- Stress & Strain Diagram
- Strain & Poisson's Ratio
- Normal & Shear Stress
- Stress, Strain, Strength, Stiffness & Defomation
- Twisting Moment Diagram Example
- Example 5: Axial Force, Shear Force and Bending Momemt Diagram (2/2)
- Example 5: Axial Force, Shear Force and Bending Momemt Diagram (1/2)
- Example 4: Axial Force, Shear Force and Bending Momemt Diagram (2/2)
- Example 4: Axial Force, Shear Force and Bending Momemt Diagram (1/2)
- Example 3: Axial Force, Shear Force and Bending Momemt Diagram (2/2)
- Example 3: Axial Force, Shear Force and Bending Momemt Diagram (1/2)
- Example 2: Axial Force, Shear Force and Bending Momemt Diagram (2/2)
- Axial Force, Shear Force and Bending Momemt Diagram Example 2 (1/2)
- Axial Force, Shear Force and Bending Momemt Diagram Example 1
- Relationships Between Bending, Shear and Axial Forces
- Axial Force Diagram, Shear Force Diagram & Bending Moment Diagram
- Equilibrium & Free Body Diagram Example 2
- Equilibrium & Free Body Diagram Example 1
- Equilibrium & Free Body Diagrams
- Loads, Transfer of Forces & Supports
- Simply Supported Beam Deflection from Loading Function Example
Course Description
This course builds on the concept of force and moment equilibrium learnt from first year engineering mechanic and physics courses and focuses on the internal actions and deformations experienced by simple structural members under loading. Concepts learnt in the course such as load transfer through axial, shear, bending and torsion as well as stress and strain relationships are the foundation for further study in any structural engineering related courses.