Complex Numbers and Algebra 
Complex Numbers and Algebra
by UNSW / N.J. Wildberger
Video Lecture 21 of 32
Not yet rated
Views: 1,620
Date Added: January 19, 2015

Lecture Description

Complex numbers of the form a+bi are mostly introduced these days in the context of quadratic equations, but according to Stillwell cubic equations are closer to their historical roots. We show how the cubic equation formula of del Ferro, Tartaglia and Cardano requires some understanding of complex numbers even when only real zeroes appear to be involved. The use of imaginary numbers in calculus manipulations is illustrated with some computations of Johann Bernoulli relating the inverse tan function to complex logarithms, and the connections bewteen tan (na) to tan(a). The geometrical planar representation of complex numbers goes back to Cotes, Euler and DeMoivre in some form, and then more explicity at the end of the 18th century to Wessel and Argand, and then Gauss. The Fundamental theorem of algebra is a key undergraduate result that often proves elusive---it was so also for the pioneers of the subject. Euler, Gauss and d'Alembert all struggled with the result, but made progress. Here we outline the ideas behind the proofs of d'Alembert and Gauss.

Course Index

Course Description

In this course, Prof. N.J. Wildberger from UNSW provides a great overview of the history of the development of mathematics. The course roughly follows John Stillwell's book 'Mathematics and its History' (Springer, 3rd ed)Starting with the ancient Greeks, we discuss Arab, Chinese and Hindu developments, polynomial equations and algebra, analytic and projective geometry, calculus and infinite series, number theory, mechanics and curves, complex numbers and algebra, differential geometry, topology and hyperbolic geometry.  This course is meant for a broad audience, not necessarily mathematics majors. All backgrounds are welcome to take the course and enjoy learning about the origins of mathematical ideas. Generally the emphasis will be on mathematical ideas and results, but largely without proofs, with a main eye on the historical flow of ideas. At UNSW, this is MATH3560 and GENS2005. NJ Wildberger is also the developer of Rational Trigonometry: a new and better way of learning and using trigonometry.

Comments

There are no comments. Be the first to post one.
  Post comment as a guest user.
Click to login or register:
Your name:
Your email:
(will not appear)
Your comment:
(max. 1000 characters)
Are you human? (Sorry)