Lecture Description
In classical hyperbolic geometry, orthocenters of triangles do not in general exist. Here in universal hyperbolic geometry, they do. This is a crucial building block for triangle geometry in this subject. The dual of an orthocenter is called an ortholine---also not seen in classical hyperbolic geometry!This lecture also introduces a number of basic important definitions: that of side, vertex, couple, triangle, trilateral. We also introduce Desargues theorem and use it to define the polar of a point with respect to a triangle. The lecture culminates in the definition of the orthic line, orthostar and ortho-axis of a triangle. The ortho-axis will prove to be the most important line in hyperbolic triangle geometry. CONTENT SUMMARY: pg 1: @00:15 Orthocenter of a triangle Basic definitions: a side, a vertex pg 2: @03:49 more definitions: a couple, a triangle, a trilateral pg 3: @06:37 A triangle has points, lines and vertices; a dual triangle; pg 4: @10:45 A dual couple; Altitude line theorem; pg 5: @12:52 Altitude point theorem; pg 6: @15:02 Orthocenter theorem; examples of no orthocenter in Poincare model @17:37 pg 7: @18:24 Proof of Orthocenter theorem pg 8: @29:43 The Ortholine theorem; the dual to the orthocenter theorem;examples from geometers sketchpad diagrams @31:40 pg 9: @32:28 Desargues theorem (a foundational theorem of projective geometry) pg 10: @34:35 Establishing the polar of a point with respect to a triangle; cevian lines; the Desargue polar pg 11: @39:07 Orthic axis, orthostar and ortho-axis; examples in Geometers Sketchpad @42:56 (THANKS to EmptySpaceEnterprise)
Course Index
- Introduction to Universal Hyperbolic Geometry
- Apollonius and Polarity
- Apollonius and Harmonic Conjugates
- Pappus' Theorem and the Cross Ratio
- First Steps in Hyperbolic Geometry
- The Circle and Cartesian Coordinates
- Duality, Quadrance and Spread in Cartesian Coordinates
- The Circle and Projective Homogeneous Coordinates
- The Circle and Projective Homogeneous Coordinates II
- Computations with Homogeneous Coordinates
- Duality and Perpendicularity
- Existence of Orthocenters
- Theorems using Perpendicularity
- Null Points and Null Lines
- Apollonius and Polarity Revisited
- Reflections in Hyperbolic Geometry
- Reflections and Projective Linear Algebra
- Midpoints and Bisectors
- Medians, Midlines, Centroids and Circumcenters
- Parallels and the Double Triangle
- The J function, sl(2) and the Jacobi identity
- Pure and Applied Geometry: understanding the continuum
- Quadrance and Spread
- Pythagoras' Theorem in Universal Hyperbolic Geometry
- The Triple Quad Formula in Universal Hyperbolic Geometry
- Visualizing Quadrance with Circles
- Geometer's Sketchpad and Circles in Universal Hyperbolic Geometry
- Trigonometric Laws in Hyperbolic Geometry using Geometer's Sketchpad
- The Spread Law in Universal Hyperbolic Geometry
- The Cross Law in Universal Hyperbolic Geometry
- Thales' Theorem, Right Triangles and Napier's Rules
- Isosceles Triangles in Hyperbolic Geometry
- Menelaus, Ceva and the Laws of Proportion
- Trigonometric Dual Laws and the Parallax Formula
- Introduction to Spherical and Elliptic Geometries
- Introduction to Spherical and Elliptic Geometries II
- Areas and Volumes for a Sphere
- Classical Spherical Trigonometry
- Perpendicularity, Polarity and Duality on a Sphere
- Parametrizing and Projecting a Sphere
- Rational Trigonometry: An Overview
- Rational Trigonometry in Three Dimensions
Course Description
This is a complete and relatively elementary course explaining a new, simpler and more elegant theory of non-Euclidean geometry; in particular hyperbolic geometry. It is a purely algebraic approach which avoids transcendental functions like log, sin, tanh etc, relying instead on high school algebra and quadratic equations. The theory is more general, extending beyond the null circle, and connects naturally to Einstein's special theory of relativity. This course is meant for mathematics majors, bright high school students, high school teachers, engineers, scientists, and others with an interest in mathematics and some basic algebraic skills. NJ Wildberger is also the developer of Rational Trigonometry: a new and better way of learning and using trigonometry. Look up for his course in order to familiarize with this new development. He also has recorded very organized and detailed lecture series on Algebraic Topology, History of Mathematic, Linear Algebra, and more.
Searching...


