History of Analytic Geometry and the Continuum 
History of Analytic Geometry and the Continuum
by UNSW / N.J. Wildberger
Video Lecture 12 of 32
Not yet rated
Views: 1,691
Date Added: January 19, 2015

Lecture Description

The development of Cartesian geometry by Descartes and Fermat was one of the main accomplishments of the 17th century, giving a computational approach to Euclidean geometry. Involved are conics, cubics, Bezout's theorem, and the beginnings of a projective view to curves. This merging of numbers and geometry is discussed in terms of the ancient Greeks, and some problems with our understanding of the continuum are observed; namely with irrational numbers and decimal expansions. We also discuss pi and its continued fraction approximations.

Course Index

Course Description

In this course, Prof. N.J. Wildberger from UNSW provides a great overview of the history of the development of mathematics. The course roughly follows John Stillwell's book 'Mathematics and its History' (Springer, 3rd ed)Starting with the ancient Greeks, we discuss Arab, Chinese and Hindu developments, polynomial equations and algebra, analytic and projective geometry, calculus and infinite series, number theory, mechanics and curves, complex numbers and algebra, differential geometry, topology and hyperbolic geometry.  This course is meant for a broad audience, not necessarily mathematics majors. All backgrounds are welcome to take the course and enjoy learning about the origins of mathematical ideas. Generally the emphasis will be on mathematical ideas and results, but largely without proofs, with a main eye on the historical flow of ideas. At UNSW, this is MATH3560 and GENS2005. NJ Wildberger is also the developer of Rational Trigonometry: a new and better way of learning and using trigonometry.

Comments

There are no comments. Be the first to post one.
  Post comment as a guest user.
Click to login or register:
Your name:
Your email:
(will not appear)
Your comment:
(max. 1000 characters)
Are you human? (Sorry)