History of Galois Theory II 
History of Galois Theory II
by UNSW / N.J. Wildberger
Video Lecture 28 of 32
Not yet rated
Views: 1,714
Date Added: January 19, 2015

Lecture Description

We continue our historical introduction to the ideas of Galois and others on the fundamental problem of how to solve polynomial equations. In this video we focus on Galois' insights into how extending our field of coefficients, typically by introducing some radicals, the symmetries of the roots diminishes. We get a correspondence between a descending chain of groups of symmetries, and an increasing chain of fields of coefficients. This was the key that allowed Galois to see why some equations were solvable by radicals and others not, and in particular to explain Ruffini and Abel's result on the insolvability of the general quintic equation.

Course Index

Course Description

In this course, Prof. N.J. Wildberger from UNSW provides a great overview of the history of the development of mathematics. The course roughly follows John Stillwell's book 'Mathematics and its History' (Springer, 3rd ed)Starting with the ancient Greeks, we discuss Arab, Chinese and Hindu developments, polynomial equations and algebra, analytic and projective geometry, calculus and infinite series, number theory, mechanics and curves, complex numbers and algebra, differential geometry, topology and hyperbolic geometry.  This course is meant for a broad audience, not necessarily mathematics majors. All backgrounds are welcome to take the course and enjoy learning about the origins of mathematical ideas. Generally the emphasis will be on mathematical ideas and results, but largely without proofs, with a main eye on the historical flow of ideas. At UNSW, this is MATH3560 and GENS2005. NJ Wildberger is also the developer of Rational Trigonometry: a new and better way of learning and using trigonometry.

Comments

There are no comments. Be the first to post one.
  Post comment as a guest user.
Click to login or register:
Your name:
Your email:
(will not appear)
Your comment:
(max. 1000 characters)
Are you human? (Sorry)