Lecture Description
We continue our historical introduction to the ideas of Galois and others on the fundamental problem of how to solve polynomial equations. In this video we focus on Galois' insights into how extending our field of coefficients, typically by introducing some radicals, the symmetries of the roots diminishes. We get a correspondence between a descending chain of groups of symmetries, and an increasing chain of fields of coefficients. This was the key that allowed Galois to see why some equations were solvable by radicals and others not, and in particular to explain Ruffini and Abel's result on the insolvability of the general quintic equation.
Course Index
- History of Pythagoras' theorem
- History of Pythagoras' Theorem II
- History of Greek Geometry I
- History of Greek Geometry II
- History of Greek Number Theory
- History of Greek Number Theory II
- Infinity in Greek Mathematics
- History of Number Theory and Algebra in Asia
- History of Number Theory and Algebra in Asia II
- History of Polynomial Equations
- History of Polynomial Equations II
- History of Analytic Geometry and the Continuum
- History of Analytic Geometry and the Continuum II
- History of Projective Geometry
- History of Calculus
- History of Infinite series
- Mechanics and the Solar System
- History of Non-Euclidean Geometry
- The Number Theory Revival
- Mechanics and Curves
- Complex Numbers and Algebra
- History of Differential Geometry
- History of Topology
- Hypercomplex Numbers
- History of Complex Numbers and Curves
- History of Group Theory
- History of Galois Theory I
- History of Galois Theory II
- History of Algebraic Number Theory and Rings I
- History of Algebraic Number Theory and Rings II
- Simple groups, Lie groups, and the Search for Symmetry I
- Simple groups, Lie groups, and the Search for Symmetry II
Course Description
In this course, Prof. N.J. Wildberger from UNSW provides a great overview of the history of the development of mathematics. The course roughly follows John Stillwell's book 'Mathematics and its History' (Springer, 3rd ed)Starting with the ancient Greeks, we discuss Arab, Chinese and Hindu developments, polynomial equations and algebra, analytic and projective geometry, calculus and infinite series, number theory, mechanics and curves, complex numbers and algebra, differential geometry, topology and hyperbolic geometry. This course is meant for a broad audience, not necessarily mathematics majors. All backgrounds are welcome to take the course and enjoy learning about the origins of mathematical ideas. Generally the emphasis will be on mathematical ideas and results, but largely without proofs, with a main eye on the historical flow of ideas. At UNSW, this is MATH3560 and GENS2005. NJ Wildberger is also the developer of Rational Trigonometry: a new and better way of learning and using trigonometry.