Lecture Description
Professor Susskind begins the lecture by solving Maxwell's equations for electromagnetic plane waves. He then uses the principles of action, locality and Lorentz invariance to develop the Lagrangian for electrodynamics for the special case without charges or currents. Using the Euler-Lagrange equations with this Lagrangian, he derives Maxwell's equations for this special case. Finally, Professor Susskind adds the Lagrangian term for charges and currents by using the principle of gauge invariance, and again uses the Euler-Lagrange equations to derive Maxwell's equations in relativistic notation.
Topics: Electromagnetic plane waves; Choosing a Lagrangian for electrodynamics and deriving Maxwell's equations; Adding charges and currents to the Lagrangian.
Course Index
- The Lorentz Transform
- Adding Velocities
- Relativistic Laws of Motion and E = mc2
- Classical Field Theory
- Particles and Fields
- The Lorentz Force Law
- The Fundamental Principles of Physical Laws
- Maxwell's Equations
- Lagrangian for Maxwell's Equations
- Connection Between Classical Mechanics and Field Theory
Course Description
In 1905, while only twenty-six years old, Albert Einstein published "On the Electrodynamics of Moving Bodies" and effectively extended classical laws of relativity to all laws of physics, even electrodynamics. In this course, we will take a close look at the special theory of relativity and also at classical field theory. Concepts addressed here will include four-dimensional space-time, electromagnetic fields, and Maxwell's equations.