Lecture Description
Alkenes may be oxidized to diols by permanganate or by OsO4 catalysis. Metal catalysts provide orbitals that allow simultaneous formation of two bonds from metal to alkene or H2. Coupling such oxidative additions to reductive eliminations, provides a low-energy catalytic path for addition of H2 to an alkene. Such catalytic hydrogenation is often said to involve syn stereochemistry, but the primary literature shows that addition can be anti when allylic rearrangement occurs on the catalyst. Similar oxidative/reductive cycles operate in olefin metathesis and metal-catalyzed polymerization. Careful catalyst design allows control over polymer stereochemistry (tacticity). Polymerizations catalyzed by free-radicals or acids typically lack stereochemical control, but there are ways to control regiochemistry and chain length. Latex, a natural polymer, coagulates to form a rubber ball.
Course Index
- Mechanism: How Energies and Kinetic Order Influence Reaction Rates
- Peculiar Rate Laws, Bond Dissociation Energies, and Relative Reactivities
- Rate and Selectivity in Radical-Chain Reactions
- Electronegativity, Bond Strength, Electrostatics, and Non-Bonded Interactions
- Solvation, H-Bonding, and Ionophores
- Brønsted Acidity and the Generality of Nucleophilic Substitution
- Nucleophilic Substitution Tools - Stereochemistry, Rate Law, Substrate, Nucleophile, Leaving Group
- Solvent, Leaving Group, Bridgehead Substitution, and Pentavalent Carbon
- Pentavalent Carbon? E2, SN1, E1
- Cation Intermediates - Alkenes: Formation, Addition, and Stability
- Carbocations and the Mechanism of Electrophilic Addition to Alkenes and Alkynes
- Nucleophilic Participation During Electrophilic Addition to Alkenes: Halogen, Carbene, and Borane
- Addition to Form Three-Membered Rings: Carbenoids and Epoxidation
- Epoxide Opening, Dipolar Cycloaddition, and Ozonolysis
- Metals and Catalysis in Alkene Oxidation, Hydrogenation, Metathesis, and Polymerization
- Isoprenoids, Rubber, and Tuning Polymer Properties
- Alkynes; Conjugation in Allylic Intermediates and Dienes
- Linear and Cyclic Conjugation Theory; 4n+2 Aromaticity
- Aromatic Transition States: Cycloaddition and Electrocyclic Reactions
- Electronic and Vibrational Spectroscopy
- Functional Groups and Fingerprints in IR Spectroscopy; Precession of Magnetic Nuclei
- Medical MRI and Chemical NMR
- Diamagnetic Anisotropy and Spin-Spin Splitting
- Higher-Order Effects, Dynamics, and the NMR Time Scale
- C-13 and 2D NMR - Electrophilic Aromatic Substitution
- Aromatic Substitution in Synthesis: Friedel-Crafts and Moses Gomberg
- Triphenylmethyl and an Introduction to Carbonyl Chemistry
- Mechanism and Equilibrium of Carbonyl Reactions
- Imines and Enamines; Oxidation and Reduction
- Oxidation States and Mechanisms
- Periodate Cleavage, Retrosynthesis, and Green Chemistry
- Measuring Bond Energies: Guest Lecture by Prof. G. Barney Ellison
- Green Chemistry; Acids and Acid Derivatives
- Acids and Acid Derivatives
- Acyl Insertions and a-Reactivity
- α-Reactivity and Condensation Reactions
- Proving the Configuration of Glucose and Synthesizing Two Unnatural Products
- Review: Synthesis of Cortisone
Course Description
This is a continuation of Freshman Organic Chemistry I (CHEM 125a), the introductory course on current theories of structure and mechanism in organic chemistry for students with excellent preparation in chemistry and physics. This semester treats simple and complex reaction mechanisms, spectroscopy, organic synthesis, and some molecules of nature.