Normed Vector Spaces II 
Normed Vector Spaces II
by DTU
Video Lecture 2 of 25
Not yet rated
Views: 1,383
Date Added: March 30, 2015

Lecture Description

Lecture with Ole Christensen. Kapitler: 00:00 - Boundedness/Supremum; 05:00 - Example; 08:00 - Maximum Value; 09:00 - Example: Sup Vs. Max; 12:45 - Theorem: Maximum Is Attained On Closed And Bounded Intervals; 15:30 - Vectorspace Of Continuous Functions; 22:00 - Norm On C[A,B]; 36:45 - Example Of Convergence In C[A,B]; 49:45 - Closing Remarks;

Course Index

Course Description

This is a Master's graduate-level course on real analysis. A student who has met the objectives of the course will be able to:
- distinguish between normed spaces and Hilbert spaces
- understand various types of convergence and how to verify them
- master basic operations in Hilbert spaces
- understand the role of linear algebra in analysis
- know the role of L^2 and perform basic operations herein
- master the basic manipulations with Fourier transform
- know when one should apply Fourier series or the Fourier transform
- expand square-integrable functions in various bases
- Perform calculations on B-splines
- Perform calculations with the L^p-spaces and the corresponding sequence spaces
- master basic wavelet theory

Some of the topics covered include: Normed vector spaces, Hilbert spaces, bases in Hilbert spaces, basic operator theory, the spaces L^p and l^p, approximation, the Fourier transform, convolution, the sampling theorem, B-splines, special basis functions (e.g, Legendre and Hermite polynomials), an introduction to wavelet theory.

Comments

There are no comments. Be the first to post one.
  Post comment as a guest user.
Click to login or register:
Your name:
Your email:
(will not appear)
Your comment:
(max. 1000 characters)
Are you human? (Sorry)