Pure and Applied Geometry: understanding the continuum 
Pure and Applied Geometry: understanding the continuum
by UNSW / N.J. Wildberger
Video Lecture 22 of 42
Not yet rated
Views: 1,023
Date Added: January 20, 2015

Lecture Description

The distinction between pure and applied geometry is closely related to the difference between rational numbers and decimal numbers. Especially when we treat decimal numbers in an approximate way: specifying rather an interval or range rather than a particular value. This gives us a way of explaining the distinction between a line meeting a circle exactly or only roughly. This video addresses a very big confusion in mathematics: the idea that `real numbers' are a proper model for the `continuum'. THEY ARE NOT!! The true foundation for mathematics rests in the rational numbers and concrete constructions made from them. So we point out some of the logical deficiencies in the usual chat about the square root of 2, or pi, or e. And show the way towards a much more sensible approach to one of the most important problems in mathematics: how to understand the hierarchy of continuums. CONTENT SUMMARY: pg 1: @00:11 Circles, lines, rational numbers, real numbers pg 2: @04:00 Errett Bishop quote; Pure Geometry and Applied Geometry compared pg 3: @05:58 Pure Geometry|rational numbers :: Applied Geometry|decimal numbers; rational number framework pg 4: @07:32 Decimal numbers pg 5: @11:40 infinite decimals; pg 6: @22:31 Applied mathematicians; rough decimal pg 7: @26:06 example; look at pixels pg 8: @30:58 rough or exact solutions of a polynomial curve, Fermat curve pg 9: @32:52 unit circle pg 10: @34:53 Continuum Problem: To understand the hierarchy of continuums (THANKS to EmptySpaceEnterprise)

Course Index

  1. Introduction to Universal Hyperbolic Geometry
  2. Apollonius and Polarity
  3. Apollonius and Harmonic Conjugates
  4. Pappus' Theorem and the Cross Ratio
  5. First Steps in Hyperbolic Geometry
  6. The Circle and Cartesian Coordinates
  7. Duality, Quadrance and Spread in Cartesian Coordinates
  8. The Circle and Projective Homogeneous Coordinates
  9. The Circle and Projective Homogeneous Coordinates II
  10. Computations with Homogeneous Coordinates
  11. Duality and Perpendicularity
  12. Existence of Orthocenters
  13. Theorems using Perpendicularity
  14. Null Points and Null Lines
  15. Apollonius and Polarity Revisited
  16. Reflections in Hyperbolic Geometry
  17. Reflections and Projective Linear Algebra
  18. Midpoints and Bisectors
  19. Medians, Midlines, Centroids and Circumcenters
  20. Parallels and the Double Triangle
  21. The J function, sl(2) and the Jacobi identity
  22. Pure and Applied Geometry: understanding the continuum
  23. Quadrance and Spread
  24. Pythagoras' Theorem in Universal Hyperbolic Geometry
  25. The Triple Quad Formula in Universal Hyperbolic Geometry
  26. Visualizing Quadrance with Circles
  27. Geometer's Sketchpad and Circles in Universal Hyperbolic Geometry
  28. Trigonometric Laws in Hyperbolic Geometry using Geometer's Sketchpad
  29. The Spread Law in Universal Hyperbolic Geometry
  30. The Cross Law in Universal Hyperbolic Geometry
  31. Thales' Theorem, Right Triangles and Napier's Rules
  32. Isosceles Triangles in Hyperbolic Geometry
  33. Menelaus, Ceva and the Laws of Proportion
  34. Trigonometric Dual Laws and the Parallax Formula
  35. Introduction to Spherical and Elliptic Geometries
  36. Introduction to Spherical and Elliptic Geometries II
  37. Areas and Volumes for a Sphere
  38. Classical Spherical Trigonometry
  39. Perpendicularity, Polarity and Duality on a Sphere
  40. Parametrizing and Projecting a Sphere
  41. Rational Trigonometry: An Overview
  42. Rational Trigonometry in Three Dimensions

Course Description

This is a complete and relatively elementary course explaining a new, simpler and more elegant theory of non-Euclidean geometry; in particular hyperbolic geometry. It is a purely algebraic approach which avoids transcendental functions like log, sin, tanh etc, relying instead on high school algebra and quadratic equations. The theory is more general, extending beyond the null circle, and connects naturally to Einstein's special theory of relativity. This course is meant for mathematics majors, bright high school students, high school teachers, engineers, scientists, and others with an interest in mathematics and some basic algebraic skills. NJ Wildberger is also the developer of Rational Trigonometry: a new and better way of learning and using trigonometry. Look up for his course in order to familiarize with this new development. He also has recorded very organized and detailed lecture series on Algebraic Topology, History of Mathematic, Linear Algebra, and more.

Comments

There are no comments. Be the first to post one.
  Post comment as a guest user.
Click to login or register:
Your name:
Your email:
(will not appear)
Your comment:
(max. 1000 characters)
Are you human? (Sorry)