Lecture Description
Class begins with clarification of equations from the previous lecture. Four post-Newtonian gravitational effects are introduced and discussed in detail. The first of these is the so-called Perihelion Precession, which occurs when the major axis of a planet's elliptical orbit precesses within its orbital plane, in response to changing gravitational forces exerted by other planets. Secondly, deflection of light is described as the curving of light as it passes near a large mass. Gravitational redshift is explained as a frequency effect that occurs as light moves away from a massive body such as a star or black hole. Finally, the existence and effects of gravitational waves are discussed. The lecture closes with a brief history of the 1919 eclipse expedition that made Einstein famous.
Course Index
- Introduction
- Planetary Orbits
- Our Solar System and the Pluto Problem
- Discovering Exoplanets: Hot Jupiters
- Planetary Transits
- Microlensing, Astrometry and Other Methods
- Direct Imaging of Exoplanets
- Introduction to Black Holes
- Special and General Relativity
- Tests of Relativity
- Special and General Relativity (cont.)
- Stellar Mass Black Holes
- Stellar Mass Black Holes (cont.)
- Pulsars
- Supermassive Black Holes
- Hubble's Law and the Big Bang
- Hubble's Law and the Big Bang (cont.)
- Hubble's Law and the Big Bang (cont.)
- Omega and the End of the Universe
- Omega and the End of the Universe
- Dark Matter
- Dark Energy and the Accelerating Universe and the Big Rip
- Supernovae
- Other Constraints: The Cosmic Microwave Background
- The Multiverse and Theories of Everything
Course Description
In this course, Yale Prof. Charles Bailyn focuses on three particularly interesting areas of astronomy that are advancing very rapidly: Extra-Solar Planets, Black Holes, and Dark Energy. Particular attention is paid to current projects that promise to improve our understanding significantly over the next few years. The course explores not just what is known, but what is currently not known, and how astronomers are going about trying to find out.
This Yale College course, taught on campus twice per week for 50 minutes, was recorded for Open Yale Courses in Spring 2007.