
Lecture Description
In the first lecture of the course Professor Susskind introduces the original principle of relativity - also known as Galilean Invariance - and discusses inertial reference frames and simultaneity. He then derives the Lorentz transformation of special relativity following the method in Einstein's original paper [check this], and introduces length contraction and time dilation, invariants, and space- and time-like intervals.
Topics: The principle of relativity; Reference frames; Simultaneity; Derivation of the Lorentz transformation; Speed of light is independent of reference frame; Length contraction and time dilation; Invariant intervals; Space-like and time-like intervals.
Course Index
- The Lorentz Transform
- Adding Velocities
- Relativistic Laws of Motion and E = mc2
- Classical Field Theory
- Particles and Fields
- The Lorentz Force Law
- The Fundamental Principles of Physical Laws
- Maxwell's Equations
- Lagrangian for Maxwell's Equations
- Connection Between Classical Mechanics and Field Theory
Course Description
In 1905, while only twenty-six years old, Albert Einstein published "On the Electrodynamics of Moving Bodies" and effectively extended classical laws of relativity to all laws of physics, even electrodynamics. In this course, we will take a close look at the special theory of relativity and also at classical field theory. Concepts addressed here will include four-dimensional space-time, electromagnetic fields, and Maxwell's equations.