#### More Physics Courses

# Classical Physics

### Course Description

Lecture Series on Classical Physics by Prof.V.Balakrishnan, Department of Physics, IIT Madras. Among the topics in the lectures are:

- Mass, Length and Time

- Classical Dynamics

- Harmonic Oscillator

- Harmonic Oscillator

- Dimensional dynamical systems

- Dimensional dynamical systems

- The Principles of the Equations of Motion

- Maxwell's Equations

- Lagrangian for a charged particle in a EM field

- Lagrangian and Hamiltonian Dynamics

- Hamiltonian Systems

- Integrability of Hamiltonian Systems

- Emmy Noether, Symmetry, Invariance and Conservation Laws

- 2D Isotropic Oscillators, The Kepler Problem, Introduction to Statistical Physics

- Integrable Systems: Periodic, Quasiperiodic, Ergotic, Mixing Motion, Exponential Instability, global - exponential instability

- Lyapunov Exponent

- Intermitency

- E.N. Lorenz

- Exponential Divergencies, Lyapunov Exponent, Bernoulli Map, Frobenius-Perron Equation

- Lyapunov Exponent, Baker's Map, Arnold's cat map, Gauss continued fraction map

- Statistical Mechanics: Isolated Systems, Fundamental Postulate of Equilibrium, Microcanonical Ensemble

- Binomial Distribution

- Relative Fluctuation

- Thermodynamics of Ideal Gases and its Statistic Mechanics

- Boltzmann's Formula

- Probability and Maxwellian Distributions, Moment generating function, Excess Kurtosis, Lévy alpha-stable distributions

- J.A. Shabat and J.D. Tamarkin, "The problem of moments"

- Maxwellian distributions, Gunbel, Weibull & Frechet distribution, Phase Diagrams

- Phase Diagrams, Model of Paramagnetism, dipole moment, Weiss molecular field theory

- Ferromagnetism, spontaneous magnetization, Landau Theory

- Landau Theory and critical exponents, Thermodynamic relations, Continuum limit of random walk

- Lie Groups, homomorphism, kernel

- Group of proper rotation in 3D, Parametrization by Euler angles, unitary matrices, Noether's theorem

- Symmetry, Invariance and Conservation laws (Noether's theorem), Principles of Relativity

- Lorentz invariance, Riemannian manifold, metric tensors, d'Alembertian operator

- EM Field tensor, dual tensor, Levi-Civita symbol in 4D, Lorentz transformations, time-like and space-like vectors

- Lorentz transformations in EM fields

For more details on NPTEL visit http://nptel.iitm.ac.in

**17**ratings

### Video Lectures & Study Materials

## Comments

**Disclaimer:**

*If any embedded videos constitute copyright infringement, we strictly recommend contacting the website hosts directly to have such videos taken down. In such an event, these videos will no longer be playable on CosmoLearning or other websites.

indian wrote 8 years ago.Excellent Videos!! Talks about everything you need to know

about classical physics before entering quantum

mechanics.Has a lot to teach.

s.nilanchal wrote 8 years ago.tnak you sir

akanksha awasthi wrote 8 years ago.this provided me an independent way of doing physics on

global standards.it normalizes different different univ

standards.i am from a village, so this was only and

excellent way to learn......

deekshant awasthi wrote 8 years ago.really it is very helpful to give excellent exposure to all

students who want to work with true standards of science.

Adrian wrote 8 years ago.Title is perfect, and man he is extremely smart great

video!!!