Lecture Description
Ampere's Law is used to find the magnetic field generated by currents in highly symmetric geometries like the infinitely long wire and the solenoid. It is shown how magnetism can be used to convert macroscopic mechanical energy to do microscopic electrical work. Lenz's and Faraday's Laws are introduced. The latter says that a changing magnetic field generates a non-conservative electric field.
Course Index
- Electrostatics
- Electric Fields
- Gauss's Law I
- Gauss's Law and Application to Conductors and Insulators
- The Electric Potential and Conservation of Energy
- Capacitors
- Resistance
- Circuits and Magnetism I
- Magnetism II
- Ampere's Law
- Lenz's and Faraday's Laws
- LCR Circuits: DC Voltage
- LCR Circuits: AC Voltage
- Maxwell's Equations and Electromagnetic Waves I
- Maxwell's Equations and Electromagnetic Waves II
- Ray or Geometrical Optics I
- Ray or Geometrical Optics II
- Wave Theory of Light
- Quantum Mechanics I: Key experiments and wave-particle duality
- Quantum Mechanics II
- Quantum Mechanics III
- Quantum Mechanics IV: Measurement theory, states of definite energy
- Quantum Mechanics V: Particle in a box
- Quantum Mechanics VI: Time-dependent Schrodinger Equation
- Quantum Mechanics VII: Summary of postulates and special topics
Course Description
This is a continuation of Fundamentals of Physics, I (PHYS 200), the introductory course on the principles and methods of physics for students who have good preparation in physics and mathematics. This course covers electricity, magnetism, optics and quantum mechanics.
Course Structure:
75 minute lectures, twice per week
Comments
There are no comments.
Be the first to post one.
Posting Comment...