Lecture Description
Recorded on February 22, 2013. Slides: 00:30- Eigenstates and Eigenvalues 01:19- Matrix Representations 05:21- Zeeman Basis 07:57- Eigenstates and Eigenvalues, Slide 2 11:31- Raising and Lowering Operators 15:09- Eigenstates and Eigenvalues, Slide 3 17:01- Superpositions 21:16- Spin Operators and Eigenstates 22:20- Rotation Operators 23:46- Pulsed NMR 29:05- NMR Probes 31:09- Nutation Curves (Solenoid) 35:57- RF Homogeneity 36:41- Spin-Lattice Relaxation (T1) 41:09- What Causes Longitudinal Relaxation? 42:02- What Causes Longitudinal Relaxation, Slide 2 44:10- Inversion Recovery (T1) 47:11- Relaxation along the Z-Axis
Course Index
- Symmetry and Spectroscopy I
- Symmetry and Spectroscopy II
- Transformation Matrices
- Group Theory Applications
- Rotational Spectroscopy I
- Rotational Spectroscopy II
- Rotational Spectroscopy III
- Molecular Motion
- Vibrations in Molecules
- Anharmonic Potential.
- First Midterm Exam Review.
- Electronic Spectroscopy
- Electronic Spectroscopy II
- Electronic Spectroscopy III
- Electronic Spectroscopy IV
- Fourier Transforms & Introduction to Nuclear Magnetic Resonance (NMR)
- Nuclear Magnetic Resonance II
- Eigenstates & Eigenvalues
- Spin Rotations T1 & T2
- NMR Applications/ Review
- Second Midterm Examination Review
- The Boltzmann Distribution
- Partition Functions I
- Partition Functions II
- Partition Functions
- Final Exam Review
Course Description
Principles of quantum mechanics with application to the elements of atomic structure and energy levels, diatomic molecular spectroscopy and structure determination, and chemical bonding in simple molecules. Chemistry Dept. | Physical Sciences Sch. | University of California, Irvine