
Lecture Description
The course begins with a discussion of electricity. The concept of charge is introduced, and the properties of electrical forces are compared with those of other familiar forces, such as gravitation. Coulomb's Law, along with the principle of superposition, allows for the calculation of electrostatic forces from a given charge distribution.
Reading assignment:
There are no assigned readings for PHYS 201. Professor Shankar suggests that students consult relevant sections of the books recommended on the Syllabus.
Course Index
- Electrostatics
- Electric Fields
- Gauss's Law I
- Gauss's Law and Application to Conductors and Insulators
- The Electric Potential and Conservation of Energy
- Capacitors
- Resistance
- Circuits and Magnetism I
- Magnetism II
- Ampere's Law
- Lenz's and Faraday's Laws
- LCR Circuits: DC Voltage
- LCR Circuits: AC Voltage
- Maxwell's Equations and Electromagnetic Waves I
- Maxwell's Equations and Electromagnetic Waves II
- Ray or Geometrical Optics I
- Ray or Geometrical Optics II
- Wave Theory of Light
- Quantum Mechanics I: Key experiments and wave-particle duality
- Quantum Mechanics II
- Quantum Mechanics III
- Quantum Mechanics IV: Measurement theory, states of definite energy
- Quantum Mechanics V: Particle in a box
- Quantum Mechanics VI: Time-dependent Schrodinger Equation
- Quantum Mechanics VII: Summary of postulates and special topics
Course Description
This is a continuation of Fundamentals of Physics, I (PHYS 200), the introductory course on the principles and methods of physics for students who have good preparation in physics and mathematics. This course covers electricity, magnetism, optics and quantum mechanics.
Course Structure:
75 minute lectures, twice per week