
Lecture Description
We describe a remarkable implication of Pascal's theorem,
which is that given any 5 points in the plane (no 3 of which are co-linear), there
exists a single conic curve which passes through the 5 points. It also follows, by duality, that
a conic is uniquely defined by specifying 5 lines which are tangent to it.
Course Index
- Why Perspective Drawing Works
- Without Equations, Conics & Spirals
- Foundations & Tilings in Perspective
- When Does A Parabola Look Like An Ellipse?
- Desargues' Theorem Proof
- Axioms, Duality and Projections
- Conics Made Easily and Beautifully
- Harmonic Quadrangles & The 13 Configuration
- The Line Woven Net
- Brianchon's Theorem (Pascal's Dual)
- Five Points Define A Conic
- Projective Transformations Of Lines
- Involutions Of The Line
- Constructing The Dual Of A Quadrangle - The Thirteen Point Configuration
- Pascal's Hexagrammum Mysticum Theorem
- Non Euclidean Geometry & Hyperbolic Social Networks
Course Description
Protective geometry is deeper and more fundamental than standard euclidean geometry, and has many applications in fundamental physics, biology and perspective drawing. We shall introduce it visually, without relying upon equations. The hope is make this beautiful subject accessible to anybody, without requiring prior knowledge of mathematics. At the same time, there are some very deep, rarely discussed ideas in this subject which could also benefit experts.