
Lecture Description
In this video lecture, Prof. Walter Lewin lectures on systems consisting of pendulums and springs and how they can freely oscillate at their natural frequencies (also called normal modes). He also discusses when we expose a system to a wide spectrum of frequencies, the response will be very large at the normal mode frequencies (resonances) of that system. Examples include musical instruments (standing waves on violin strings and pressure waves in wind instruments), and torsional standing waves on a bridge driven by strong winds.
Course Index
- Measurements of Space and Time
- Speed, Velocity and Acceleration
- Vectors
- 3D Kinematics: The Motion of Projectiles
- Circular Motion
- Newton's Three Laws
- Weight and Weightlessness
- Frictional Forces
- Exam Review
- Hooke's Law and Simple Harmonic Motion
- Work and Mechanical Energy
- Resistive Forces
- Conservative Forces and SHO
- Energy, Power and Satellite Orbits
- Collisions and the Center of Mass
- Elastic and Inelastic Collisions
- Change of Momentum, Impulse and Rockets
- Exam Review
- Rotational Kinetic Energy
- Angular Momentum
- Torques and Oscillating Bodies
- Kepler's Laws and Elliptical Orbits
- Doppler Shift and Stellar Dynamics
- Rolling Motion & Gyroscopes
- Static Equilibrium
- Elasticity of Materials
- Pressure in a Static Fluid
- Buoyant Force and Bernoulli's Equation
- Exam Review
- Other Oscillating Systems
- Forced Oscillations and Resonance
- Heat, Conductivity and Thermal Expansion
- Kinetic Gas Theory & Phases
- The Wonderful Quantum World
- X-ray Astronomy and Astrophysics
Course Description
8.01 is a first-semester freshman physics class in Newtonian Mechanics, Fluid Mechanics, and Kinetic Gas Theory. In addition to the basic concepts of Newtonian Mechanics, Fluid Mechanics, and Kinetic Gas Theory, a variety of interesting topics are covered in this course: Binary Stars, Neutron Stars, Black Holes, Resonance Phenomena, Musical Instruments, Stellar Collapse, Supernovae, Astronomical observations from very high flying balloons (lecture 35), and you will be allowed a peek into the intriguing Quantum World.