Lecture Description
Recorded on February 20, 2013. Slides: 01:56- 16:NMR 02:54- Zeeman Effect 06:04- Energy Differences Between the Spin States 06:46- High Field Magnets for NMR/MRI 09:09- Nuclear Zeeman Effect 11:23- Nuclear Spin Hamiltonian 13:28- Relative Sizes of Interactions 19:01- Pulsed NMR 21:49- Protons Absorbing in a Predictable Region 23:39- Chemical Shift Defines Peak Placement on Spectrum 25:31-Chemical Shift 27:06- NMR: Identification of Molecules 28:21- Chemical Shift Anisotropy (Only in Solids!) 30:51- Chemical Shift Tensors 32:27- H NMR Spectroscopy is a Powerful Tool For Structure Elucidation 35:00- H NMR Spectroscopy: Number of Signals 36:33- More Examples 37:13- H NMR Spectroscopy: Intensity of Signals 37:58- Spin Quantum Number 40:20- Relative Sizes of Interactions 40:29- Angular Momentum Operators 41:40- Eignenstates and Eigenvalues 43:35- Zeeman Basis
Course Index
- Symmetry and Spectroscopy I
- Symmetry and Spectroscopy II
- Transformation Matrices
- Group Theory Applications
- Rotational Spectroscopy I
- Rotational Spectroscopy II
- Rotational Spectroscopy III
- Molecular Motion
- Vibrations in Molecules
- Anharmonic Potential.
- First Midterm Exam Review.
- Electronic Spectroscopy
- Electronic Spectroscopy II
- Electronic Spectroscopy III
- Electronic Spectroscopy IV
- Fourier Transforms & Introduction to Nuclear Magnetic Resonance (NMR)
- Nuclear Magnetic Resonance II
- Eigenstates & Eigenvalues
- Spin Rotations T1 & T2
- NMR Applications/ Review
- Second Midterm Examination Review
- The Boltzmann Distribution
- Partition Functions I
- Partition Functions II
- Partition Functions
- Final Exam Review
Course Description
Principles of quantum mechanics with application to the elements of atomic structure and energy levels, diatomic molecular spectroscopy and structure determination, and chemical bonding in simple molecules. Chemistry Dept. | Physical Sciences Sch. | University of California, Irvine