Lecture Description
The lapse rate describes the rate at which air cools with altitude. Atmospheric stability depends on the lapse rate. When an air parcel is lifted or lowered, it can continue to rise or descend based on the temperature of the surrounding air at the new altitude, which indicates an unstable atmosphere. Inversions can occur in the atmosphere, meaning the air near the ground will be cooler than air aloft. This type of temperature profile can cause air to be trapped near the Earth’s surface in a boundary layer, which can also lead to pollutants being trapped near the ground.
Course Index
- Introduction to Atmospheres
- Retaining an Atmosphere
- The Perfect Gas Law
- Vertical Structure of the Atmosphere; Residence Time
- Earth Systems Analysis (Tank Experiment)
- Greenhouse Effect, Habitability
- Hydrostatic Balance
- Horizontal Transport
- Water in the Atmosphere I
- Water in the Atmosphere II
- Clouds and Precipitation (Cloud Chamber Experiment)
- Circulation of the Atmosphere (Exam I review)
- Global Climate and the Coriolis Force
- Coriolis Force and Storms
- Convective Storms
- Frontal Cyclones
- Seasons and Climate
- Seasons and Climate Classification
- Ocean Bathymetry and Water Properties
- Ocean Bathymetry and Water Properties
- Ocean Water Density and Atmospheric Forcing
- Ocean Currents
- Ocean Currents and Productivity
- El Niño
- Ice in the Climate System
- Ice and Climate Change
- Isotope Evidence for Climate Change
- Global Warming
- Global Warming II
- Global Warming III
- Climate Sensitivity and Human Population
- The Two Ozone Problems
- The Ozone Layer
- Energy Resources, Renewable Energy
- Renewable Energy
- Review and Overview
- Lab - Quinnipiac River Field Trip
Course Description
This course explores the physical processes that control Earth's atmosphere, ocean, and climate. Quantitative methods for constructing mass and energy budgets. Topics include clouds, rain, severe storms, regional climate, the ozone layer, air pollution, ocean currents and productivity, the seasons, El Niño, the history of Earth's climate, global warming, energy, and water resources.