
Lecture Description
goo.gl/D2s6un for more FREE video tutorials covering Engineering Mechanics (Statics & Dynamics)
The objectives of this video are to consider more complex loading cases & determine internal forces from both ends of the beam. Very first, the video presents the schematic diagram of the exemplary problem & asks to find internal force at midspan. The schematic diagram shows a simply supported beam having a fixed support at left end & a roller support at right end. The beam is 8 m in length & subjected to 2 different types of loads i.e., a uniformly distributed load of 5 KN/m across 4 m length of the beam from right end and a point load of 10 KN at 3 m away from right end of the beam.
Moving on, the video draws the FBD followed by a workout showing how to determine the support reactions using the principle of equilibrium. Next, the video applies cuts at critical points and briefly talks about the two options available to calculate the internal forces at midspan. Later, the video considers the left cut & illustrates how to find internal forces i.e., axial, shear and bending moments at midspan of the beam. Finally, the video refers to watch next video to continue the lesson.
Course Index
- Scalars and Vectors
- Parallelogram Law and Triangle Method
- Unit Vectors and Components
- Vectors Example
- Vector Tower Example
- 3D Vectors
- 3D Vector Example (Part 1)
- 3D Vectors Example (Part 2)
- Introduction to Forces
- Introduction to Moments
- Moment Example 1
- Moment Example 2
- Moments and Couple Moments
- Equivalent Systems Theory and Example
- Distrubuted Loads
- Solving Distributed Loads and Triangular Loads
- Resolving Forces Advanced Example
- Introduction to Equilibrium
- Introduction to Free Body Diagrams (FBD)
- Free Body Diagram Example
- Introduction to Supports: Roller, Pin, Fixed
- Simply Supported Beams Free Body Diagram Example
- Cantilever Free Body Diagram Example
- Advanced Free Body Diagram Beam Example
- Introduction to Axial & Shear Forces and Bending Moments
- Axial, Shear and Bending Diagrams
- Method of Sections
- Method of Sections Simple Example
- Method of Sections Advanced Example Part 1
- Method of Sections Advanced Example Part 2
- Introduction to Hooke's Law
- Hooke's Law and Stress vs Strain
- Stress vs Strain Diagram
- Rectilinear Motion |
- Rectilinear Motion Examples |
- Rectilinear Motion with Variable Acceleration |
- Curvilinear Motion |
- Projectile Motion |
- Projectile Motion Formulae Derivations |
- Circular Motion and Cylindrical Coordinates |
- Polar Coordinates Example |
- Newton's Laws and Kinetics |
- Introduction to Work |
- Work Example |
- Power and Efficiency |
- Work and Energy Example |
- Potential Energy, Kinetic Energy & Conservation |
- Conservation of Mechanical Energy Example |
- Introduction to Impulse and Momentum |
- Impulse, Momentum, Velocity Example 1 |
- Impulse, Momentum, Velocity Example 2 |
- Introduction to Impact |
- Central Impact Example |
- Shear Force Diagram Example
- Bending Moment Diagram Example
- Shear and Bending Diagrams
- Beam Analysis Example Part 1
- Beam Analysis Example Part 2
- Introduction to Trusses
- Types of Trusses and Design Assumptions
- Method of Joints Truss Example
- Advanced Method of Joints Truss Example
- Introduction to Method of Sections
- Method of Sections Theory
- Method of Sections Truss Example
- Simple Frame Example
- Advanced Frames Example
- Introduction to Friction
- Static Friction Example
- Tipping vs Slipping Friction
- Introduction to Hyrdostatic Forces | Hyd
- Hydrostatic Forces Example | Hyd
- Centroids
- Finding Centroids by Integration
- Centroids of Composite Shapes Example
- Moment of Inertia
- Moment of Inertia Standard Shapes
- Parallel Axis Theorem Part 1
- Parallel Axis Theorem Part 2
- Average Normal Stress
- Average Stress Example
- Shear Stress Example
- Strain
Course Description
Mechanics, the study of forces and physical bodies, underpins a very large proportion of all forms of engineering. A thorough understanding of mechanics is essential to any successful engineer. This course helps develop an understanding of the nature of forces with consideration for how they may be simplified in an engineering context. The conditions of equilibrium are then used to solve a number of problems in 2D and 3D before moving on to a broad range of topics including centroids, distributed loads, friction and virtual work. The course will also provide an introduction to dynamics, with a particular focus on the effects that forces have upon motion.